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Abstract 

This paper presents an optimal portfolio selection approach based on value 

at risk (VaR), conditional value at risk (CVaR), worst-case value at risk 

(WVaR) and partitioned value at risk (PVaR) measures as well as 

calculating these risk measures. Mathematical solution methods for solving 

these optimization problems are inadequate and very complex for a portfolio 

with high number of assets. For these reasons, a combination of particle 

swarm optimization (PSO) and genetic algorithm (GA) is used to determine 

optimized weights of assets. Stocks’ Optimized weight results show that 
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proposed algorithm gives more accurate outcomes in comparison with GA 

algorithm. According to back-testing analysis, PVaR and WVaR 

overestimate risk value while VaR and CVaR give a rather accurate 

estimation. A set of companies in Tehran Stock Exchange are considered as 

a case study for empirical analysis.  

Key words: portfolio optimization, value at risk, CVaR, WVaR, PVaR, 

HGAPSO 
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1. Introduction

Optimal portfolio allocation is an important issue for risky asset holders who 

are exposed to financial risks. Markowitz (1952) proposed optimal portfolio 

selection based on mean-variance optimization in which the concept of 

portfolio diversification was formally introduced for the first time. In his 

model, portfolio’s mean and variance are considered as return and risk 
respectively in which the optimal portfolio is the one with maximum return 

at a given level of risk or with minimum risk at determined return. A set of 

optimum portfolios constitute an efficient frontier that an investor chooses 

an appropriate portfolio regarding his/her position.

Many researchers found that two main assumptions of Markowitz 

approach are violated in empirical studies with real data. The first 

assumption (which is related to a tradeoff between risk and return) is 

criticized by Tobin (1958) and Chamberlin (1983) who believed that this 

assumption is valid if the returns distribution is symmetric. Other empirical 

evidence by Mandelbrot (1963), Fama (1965), Simkowitz and Beedles 

(1983) and Alles and Kling (1994) indicated that returns have asymmetric 

distribution and a high kurtosis. Second assumption of Markowitz approach 

is that investors are indifferent between positive and negative mean 

deviations. But, many empirical observations demonstrate that investors 

reflect asymmetric behavior facing upside and downside risks [Mittone and 

Vorkink (2007), Barbies and Huang (2008), Gollier and Parker (2007) and 

etc.]. Therefore, using portfolio variance as risk measure faces some 

limitations. In this method, positive returns (with far distance from mean) are 

desirable for an investor who considers them as risks because variance is a 

symmetrical criterion and does not consider the change of directions. On the 

other hand, considering variance as risk criteria is not tangible for investors 

and requires statistical information (Giorgi, 2002). Some studies (Quirk 1966 

and Mao 1970) show that investors focus more on undesirable risks in 
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comparison with risks with negative and positive volatilities. Regarding 

problems of variance, Markowitz (1959) suggested semi-variance as risk 

measure which only considered negative volatilities but it needs too much 

information and is uncertain for explaining returns probability distribution.  

Konno & Ymazaki (1991) proposed mean absolute deviation (MAD) as risk 

measure by expanding Markowitz model. This criterion was also criticized 

by many. For example Simaan (1997) shows that information about 

variance-covariance matrix is disregarded in MAD calculation. 

The correct definition of risk and presenting an accurate indicator to 

measure its value are two fundamental issues in financial economy which 

have been consistently taken into account from Markowitz's work until now. 

In general, the modern theory of risk is highly expanded through 

introduction of value at risk (VAR) by J.P. Morgan in 1994. VaR measures 

maximum expected loss which is related to market risk. Since this measure 

present risk value in a single number, it is accepted by many financial 

institutions and insurance companies as an international measure. However, 

VaR is not a coherent risk measure, some of risk criteria including 

conditional value at risk (CVaR), worst value at risk (WVaR) and partitioned 

value at risk (PVaR) were proposed with coherent risk measure properties. 

Therefore, these four risk measures are considered instead of variance to 

improve portfolio optimization. The purpose of this paper is to use these 

alternative approaches for portfolio optimization of Tehran stock exchange. 

In fact, share of each stock is determined by minimization of these risk 

measures subject to constraints. Optimization problems are solved by a 

hybrid genetic algorithm and particle swarm optimization (HGAPSO) 

method for different companies of Tehran stock exchange.

The structure of the paper is as follows. Main principles of four 

mentioned approaches are described in section 2. Particle swarm 

optimization (PSO) and genetic algorithm methods are explained in section 

3. Empirical results are analyzed in section 4 and finally conclusion of paper 

is presented in section 5.   
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2. Portfolio Optimization Approaches Based on VaR Measures   

In this section, four new approaches of portfolio optimization based on VaR 

measures are presented.

2.1. Value at risk (VaR)  

VaR is considered as the most common criterion by banks and financial 

institutions under Basel Accord. VaR can be defined as maximum expected 

loss of financial position during a given period in future (a day, a week or a 

month) at a specified probability level. By definition, VaR has two main 

parameters: time horizon which is shown as the number of days and 

confidence level. In general, by assuming N days as time horizon and 𝛼 

percent as probability level, we are (100-𝛼) percent sure that loss will not be 

more than VaR during next N days. Mathematically, VaR can be 

demonstrated as follows: 

                 𝛼 (1) 

Where    and    are portfolio value at t=0 and t=1, respectively. There 

are three approaches of VaR calculation and estimation including 

parametric, non-parametric and semi-parametric methods. In non-parametric 

approach, there is no constraint on portfolio return distribution and VaR is 

calculated based on historical return quintile or predicted return quintile. 

Historical simulation and Monte Carlo simulation are in this method. In fully 

parametric approach, VaR is calculated by imposing pre-assumptions on 

return distribution and dynamics of volatility model. GARCH type models 

and Riskmetrics model are examples of this approach. Semi-parametric 

approach combines two previous methods in order to impose assumptions 

only on dynamics of volatility model. Volatility-weighted historical 
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simulation, filtered historical simulation and Conditional autoregressive VaR 

models are in this category.

As this study focuses on portfolio optimization problem, parametric 

approach or variance-covariance method are applied to form it based on 

VaR. Variance-covariance technique which was described in J.P Morgan 

Riskmetrics programming assumes that returns follow normal distribution 

and correlations between risky assets are constant. Under this method, VaR 

is estimated simply through calculation of returns variance-covariance. In 

this case, VaR is measured mathematically as follows: 

                𝛼      (2) 

Where    and    are conditional mean and variance of portfolio 

respectively and     is an inverse cumulative density function at 𝛼 

probability level. For portfolio optimization problem, VaR is defined as a 

minimum real number (𝛾) that does not exceed      with 𝛼 probability. 

This definition is expressed as: 

             𝛾           𝛼  (3) 

Where r and ware returns and weights vectors of n risky assets and 

 ̅      is portfolio mean. Also, P indicates probability distribution of 

asset returns. Thus the portfolio optimization problem based on VaR 

definition can be written as: 

(4)          𝛾  

s.t.           

 

Where e is a vector of ones and budget constraint indicates that sum of 

assets weights equals 1. Note that this optimization problem is a chance-

constrained stochastic program and requires accurate and complete returns 
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probability distribution which is complex. Due to VaR non-convexity, its 

solution is difficult and therefore, objective function of equation (4) is 

approximated. Usually in finance framework, it is assumed that assets 

returns follow normal distribution with mean vector of    and variance-

covariance matrix of   . Considering this assumption and using parametric 

approach (equation 2), approximation of portfolio optimization problem is 

specified as: 

(5)                          𝛼  √       

s.t.     1)       

          2)           

Where   is target gain and second constraint shows that expected mean of 

portfolio should be equal to  .    and    are achieved simply regarding 

equations 6 and 7 respectively. 

   [
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] 
(6) 

 Where 

                             (     )   (7) 

2.2. Conditional value at risk (CVaR) 

One of the important limitations of VaR is that it does not satisfy coherent 

risk characteristics proposed by Artzner et al. (1999). With respect to VaR 

disadvantages such as non-Subadditivity and also due to the fact that VaR 
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does not give any information about losses more than itself, another risk 

measure was proposed by Uryasev and Rockafellar (1999) which is called 

conditional value at risk (CVaR). This risk indicator has all properties of 

coherent risk and can measure expected losses in case of an unfavorable 

economic situation. In other words, VaR only measures maximum loss at 

specified confidence level in normal market state and gives no information 

about the exact amount of loss in critical conditions while CVaR calculates 

expected loss in an unanticipated situation. CVaR provides additional 

information about loss in the left side of its distribution curve when expected 

loss exceeds VaR. Mathematical representation of CVaR is shown as: 

(8)                        

According to the VaR definition and assuming f(x) as density function of 

x, CVaR can be specified as: 

(9)         
 

 
∫        

      

  
  

In special case, considering f(x) as a normal density function, CVaR is 

obtained as: 

(10)            𝛼           𝛼       

Where   is normal standard density and   is its cumulative distribution 

function. It is obvious that CVaR is larger than VaR.  

Optimization problem using CVaR measure can be approximated as: 

(11) 

                     𝛼          𝛼   √       

s.t.     1)           

          2)       
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In this model, mean vector and variance-covariance matrix is calculated 

as VaR model.

3.2. Worst value at risk (WVaR)  

Precise Calculation of parametric VaR and CVaR necessitates complete 

information about returns distribution due to lack of information. On the 

other hand, return distribution in these optimization models are usually pre-

determined while in reality it is not. In this situation, it may lead to 

underestimation of true VaR and CVaR values with optimization 

approximations in equations (5) and (11).  Ghaoui et al. (2003) argued that 

financial data face error and it is possible that calculated VaR is lower than 

true one. Due to this reason, they [same as Bertsimas
  
and

 
Popescu (2000)] 

believed that standard deviation coefficient in VaR model is not valid and an 

upper bound is taken into account for this coefficient. In fact, considering a 

given mean and variance-covariance of risky assets returns, they offered a 

new conservative risk measure with a pessimistic approximation of VaR 

named as worst-case value at risk (WVaR). Assuming that    is set of all 

probability distributions in    space with mean of    and covariance of   , 

mathematical definition of WVaR can be represented as:  

(12) 

            𝛾                 𝛼         

                                  
    } 

Ghaoui et al., specified WVaR model as:

(13)                 𝛼  √       

Where   𝛼  √    𝛼  𝛼  is the upper bound which is replaced instead 

of     𝛼  in VaR model. They suggested although returns distribution is 

unknown, WVaR can be specified using mean and variance-covariance of 
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assets returns in a probability distributions set. Indeed, it is better to take one 

class of probability distributions into account instead of considering joint 

distribution of assets returns and parameter estimations using empirical data. 

So, the portfolio optimization problem based on WVaR is approximately 

formed as:   

(14)                       𝛼     
        

s.t.     1)           

          2)       

Where      indicates 2-norm and the descriptive statistics are calculated 

the same as VaR and CVaR approaches. Note that WVaR is a symmetric 

risk measure while VaR and CVaR are downside ones. 

4.2. Partitioned value at risk (PVaR) 

Goh
 
et al (2012) introduced a new coherent risk measure via expanding 

WVaR which is called partitioned value at risk (PVaR). Unlike VaR and 

CVaR measures that define on single probability distribution, PVaR defines 

over one class of probability distributions. This new risk measure can be 

identified through additional statistical information so that random returns 

are divided to two half spaces of negative and positive. Thus, statistical 

information such as mean and variance-covariance are calculated for gain 

and loss half spaces of assets returns separately. Like WVaR, This measure 

satisfies all property of coherent risk. It can be shown that for returns with 

asymmetric distribution, PVaR evaluates risk value lower than WVaR. 

Assuming    is time series returns of i
th
 asset with dimension of t×1, due 

to dimension adaption of two half spaces, it is divided into two non-negative 

  
             and non-positive   

             partitions in such a way 

that      
    

  . Generally, portfolio returns vector r is divided into two 

gain and loss vectors as         . Where    involves positive and zero 
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returns while    includes negative and zero ones. It is obvious that       

  . Moreover, mean of    and    are    and    respectively and therefore, 

the mean portfolio is         . In this situation, statistical information is 

located in    . Finally, variance-covariance matrix  ̂  dimension is 2n×2n 

which is represented as follows: 

 (15) 
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Where, 

(16)       
    

        
    

     
    

     

In this equation,   
  indicates the i

th
 asset return in k

th
 half space (k=1, 2 

and i, j=1, 2,…n). In short, based on these partition statistics,           ̂  

can be defined as one set of probability distributions.  

(17) 
    

      ̂            
      ̂       (  

  )  (  

  )  

 (      

     ) (      

     )
 
  ̂    

With respect to above clarification, PVaR definition over probability 

distribution    is presented as bellows: 

(18)                           𝛼   ̂ 
   

(   
   

)      
     

    

Accordingly, portfolio optimization problem based on PVaR measure is 

written as:   
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(19) 

   
 

                  𝛼  ‖  
   (

   

   
)‖

 

    
     

  

s.t.     1)           

          2)       

          3)       

In this model, s and t are auxiliary variables which are considered only 

for forming of optimization problem and do not contain any information.   

3. Heuristic Algorithms 

Solution of an optimization problem via mathematical methods is very 

complex when number of variables increase. Therefore, the computational 

methods are used to obtain the optimal solution. In this study, genetic 

algorithm (GA) and hybrid genetic algorithm with particle swarm 

optimization (HGAPSO) is applied to find large number of assets weights.  

GA which was proposed by Holland (1975) is a computational search 

method based on the structure of genes and chromosomes. This algorithm 

starts with initial population of random individuals that each of them is 

considered as optimum solution and is driven over serial generations using 

three operator including selection, crossover and mutation.  In four above 

mentioned optimization problems based on VaR measures, portfolio is 

considered as individuals or chromosomes. Risky assets weights are 

considered as genes which their encoding is real number because objective 

functions and constraints are continuous. 

Particle swarm optimization (PSO) is one of population based algorithms 

that were suggested by Kennedy
 
and Eberhart (1995). This method is 

originated from birds’ flight to find foods and nests. It involves population 

with different swarms so that each swarm is a solution. For portfolio 

optimization problem, set of assets weights is considered as population and 
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each asset is assumed as swarm. Two main characteristics of each swarm are 

position and velocity. At first swarms are positioned in search space 

randomly and weighted based on a random number. The velocity indicates 

distance and direction of swarm. In fact, the main foundation for this 

approach is that each swarm remembers its and others’ previous best 

position and moves to the direction of the best swarm. 

Although GA and PSO methods act parallel in exploration space and 

track different locations of solution space, they have some limitations. GA 

advantages are its robustness and adaptability while its disadvantages are 

long run time and lowering convergence speed. On the other hand, PSO has 

an advantage of high convergence to achieve optimum solution but its 

disadvantage is its dependency to initial conditions. In order to utilize the 

benefits of both methods, a combination of these two algorithms is presented 

in this study. The hybrid algorithm enjoys both GA accuracy and PSO 

convergence speed. The general framework of HGAPSO is shown in Figure 

1 where hybrid algorithm begins with initial population of m portfolios that 

each of them involves n assets shares. Next, each random portfolio fitness is 

evaluated through objective functions values and then portfolios with highest 

fitness are selected. These selected portfolios are considered as initial 

swarms and positioned in a six steps loop. This loop consists of fitness 

function estimation, updating of p-best (local optimum), g-best (global 

optimum), swarm velocity, swarm value and swarm mutation. As a result, 

global optimum weights are obtained. Afterward, new population is 

reproduced by crossover and mutation operators of GA algorithm.  This new 

population is fitted and individuals with highest fitness are extracted. If these 

solutions are converged to g-best results, the optimum weights are found. 

Otherwise, all the previous steps are repeated until the convergence 

condition is eventually established to achieve a global optimum.
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Figure 1: Hybrid Algorithm Flowchart 

 

4. Empirical Results  

This study concentrates on finding optimum portfolio based on VaR, CVaR, 

WVaR and PVaR optimization approaches using GA and HGAPSO 

algorithms and calculation of these mentioned risk measures. In this section, 

statistical population and its descriptive data are presented at first and then, 

empirical results of assets optimum weights are analyzed. Finally, back test 

statistics in order to evaluate calculated risk measures is discussed. 

4.1. Statistical description 

In this study, stocks of 17 companies of Tehran stock exchange are selected 

as portfolio. In order to reduce the correlations between stocks, these 

companies are chosen from among various industries. Time series closed 
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price of this portfolio is collected from archive of Finance information 

processing of Iran (FIPIRAN) between 21/12/2006 to 12/12/2014. Daily 

returns of this data are obtained via:       
  

    
 , where Pt and Pt-1 are 

closed price at time t and t-1 respectively. Returns time series data consists 

of 2360 observations which are divided to 1880 in sample observations for 

optimization and 472 out sample observations in order to evaluate estimated 

risk measures. Table 1 demonstrates names of these companies and some 

descriptive statistics of them. Also, figures of daily closed price and returns 

for 4 companies as examples are shown in Figure 2. 

Table1: Company Names and Their Descriptive Statistics 

i Company name Mean Std. dev. Skewness Kurtosis Jarque–Bera 

1 Iran Transfo (IT) 0.00030 0.05000 25.91 859.05 57880990.24 

2 Traktorsazi Iran (TI) -0.00080 0.02230 -1.270 13.940 9912.42 

3 Nosazi & Sakhteman 

(NS) 

-0.00130 0.02818 0.736 9.6900 3687.15 

4 Darosazi Jaber (DJ) -0.00029 0.02807 8.640 200.11 3079971.24 

5 Siman Sepahan (SS) 0.00013 0.02220 1.060 13.260 8622.78 

6 Pertol Abadan (PD) -0.00010 0.03990 18.090 544.03 23129982.54 

7 Mes Shahid Bahonar 

(MSB) 

-0.00039 0.02588 -0.990 13.870 9619.58 

8 Tooka Fulad (TF) -0.00110 0.02816 2.290 31.100 63785.63 

9 Sarmayegozari Alborz 

(SM) 

-0.00047 0.02403 2.520 28.980 55128.94 

10 Pars Khodro (PK) 0.00035 0.04033 13.34 374.36 10905084.69 

11 Saipa (S) 0.00012 0.03159 5.980 93.580 656819.85 

12 Iran Khodro (IK) -0.00052 0.02661 0.092 39.260 103467.09 

13 Hamlonaghle Tooka (HK) -0.00030 0.03315 7.430 164.63 2072546.64 

14 Dadepardazi Iran (DI) -0.00069 0.04208 3.810 230.42 4073381.19 

15 Toseye Sanaye Behshahr 

(TSB) 

-0.00070 0.02469 1.020 17.480 16833.19 

16 Sanaye Lastik Sahand 

(SLS) 

-0.00140 0.02998 0.170 46.830 151199.08 

17 Nafte Behran (NB) -0.00080 0.03785 10.73 186.71 2691348.22 
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Figure 2: Closing Price and Returns Time Series Data for  

a)DJ,  b)SS, c)PA and d)IK Stocks 
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According to Table 1, mean returns of all stocks are negative except IT, 

SS, S and PK companies. Return deviations of all companies are nearly close 

to each other. Based on skewness statistics, return distribution of SLS and IK 

companies is nearly symmetric. MSB and TI have negative skewness. 

Returns frequency curves of other companies are positively skewed. High 

values of kurtosis measures of all companies indicate that their returns 

distributions are fat tailed. Also, high values of Jarque–Bera statistics  

shows that null hypothesis of normality is rejected for return distribution  

of everyone. 

4.2. Portfolio optimization results 

In this section, mentioned portfolio optimization problems are computed for 

above case study with GA and HGAPSO. Solving optimization problems via 

these two heuristic methods begins with 100 random portfolios as initial 

population and optimizing process will be ended after 100 iterations. 

MATLAB Simulation of these algorithms is done in 100 runs. Optimized 

weights of mentioned companies and four calculated risk criteria through 

GA and HGAPSO are shown in table 2 and table 3 respectively at 

confidence levels of 0.95 and 0.99. Note that stocks weights are

as percentage.  

Table 2: Optimized Results (GA)

 C=0.95 C=0.99 

VaR CVaR WVaR PVaR VaR CVaR WVaR PVaR 

W1 2.319 1.830 2.356 4.382 3.301 2.453 2.625 10.760 

W2 11.334 10.770 9.572 11.765 11.785 7.416 9.454 4.836 

W3 3.350 4.206 6.480 3.040 4.762 6.127 4.316 5.033 

W4 4.765 7.517 7.093 5.569 4.582 8.900 8.086 7.749 

W5 12.411 11.248 9.793 7.531 8.064 12.876 9.213 2.499 
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 C=0.95 C=0.99 

VaR CVaR WVaR PVaR VaR CVaR WVaR PVaR 

W6 3.487 2.400 4.174 2.644 3.219 5.575 3.850 6.416 

W7 6.583 3.103 6.893 3.866 6.875 7.162 6.868 9.505 

W8 5.449 5.925 1.525 5.811 7.405 6.027 2.857 2.974 

W9 11.104 11.121 11.581 8.562 9.493 8.846 10.045 10.510 

W10 2.440 4.674 4.339 3.035 6.447 2.998 4.502 1.502 

W11 5.463 4.983 3.530 10.225 6.175 4.110 5.288 0.884 

W12 7.478 6.519 7.308 5.477 3.948 6.470 6.376 3.959 

W13 5.287 7.504 6.400 5.216 5.630 3.186 7.412 2.589 

W14 2.779 3.685 3.895 2.189 2.820 1.293 3.508 6.852 

W15 7.903 5.537 7.245 7.940 9.735 9.006 6.800 9.952 

W16 4.555 4.493 4.608 6.311 3.129 3.866 6.722 5.117 

W17 3.294 4.485 3.208 6.436 2.629 3.689 2.078 8.862 

Risk 

Value 
0.01246 0.01559 0.03250 0.02971 0.01780 0.01993 0.07408 0.05558 

Table 3: Optimized Results (HGAPSO)

 C=0.95 C=0.99 

VaR CVaR WVaR PVaR VaR CVaR WVaR PVaR 

W1 2.830 2.855 2.832 14.493 2.840 2.889 2.721 10.372 

W2 9.778 9.894 9.953 8.261 9.987 9.942 9.776 5.814 

W3 5.430 5.396 5.054 11.322 5.343 5.448 5.128 12.190 

W4 6.351 6.439 6.174 5.331 6.435 6.385 6.169 3.467 

W5 11.803 11.736 11.283 7.971 11.656 11.640 11.316 4.625 

W6 3.553 3.522 3.747 2.852 3.586 3.585 3.699 8.635 
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 C=0.95 C=0.99 

VaR CVaR WVaR PVaR VaR CVaR WVaR PVaR 

W7 6.739 6.683 6.816 5.028 6.666 6.707 6.664 3.556 

W8 4.845 4.855 4.685 4.227 4.841 4.830 4.629 3.700 

W9 9.602 9.547 9.742 7.609 9.590 9.538 9.849 5.242 

W10 3.732 3.699 3.571 2.786 3.690 3.773 3.767 5.717 

W11 4.239 4.338 4.234 3.193 4.285 4.177 4.163 9.305 

W12 6.511 6.519 6.856 5.530 6.516 6.543 7.109 3.747 

W13 5.129 5.206 5.693 4.046 5.256 5.199 5.629 2.742 

W14 2.686 2.705 2.584 2.309 2.702 2.734 2.633 1.719 

W15 8.241 8.082 8.107 6.986 8.132 8.265 8.221 12.062 

W16 4.652 4.683 4.768 4.804 4.626 4.517 4.720 4.529 

W17 3.878 3.841 3.901 3.254 3.849 3.827 3.805 2.578 

Risk 

Value 
0.01229 0.01513 0.03193 0.02926 0.01717 0.01941 0.07231 0.05477 

Figure 3 indicates obtained solutions trend using GA and HGAPSO over 

100 runs for VAR and PVAR approaches.  

According to results of Tables 2 and 3 and Figure 3, some points can be 

expressed: 

First, according to figure 3 (a and b), convergence process to optimum 

solutions with GA algorithm is associated with more fluctuation than hybrid 

algorithm. For example, variation of 1st asset weights over 100 runs via GA 

is between 0 and 5 but these results through HGAPSO are fluctuated 

between 2.5 to 3.5. Moreover, the amount of obtained VaR by GA varies 

between 0.0125 to 0.0135 while this variation is between 0.0122 and 0.0123. 

These results indicate that, although GA is robust, its convergence speed is 

low. In fact combining GA with PSO, new algorithm (HGAPSO) considers 

the GA accuracy as well as PSO convergence speed.  

  



Optimal Portfolio Selection for  … 21 

 

 

Figure 3: Optimized Weight and c Trends 

for (a) GA, (b) GA-PSO 
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Second, As it can be observed, optimized weights of 1st asset with 

GA(or HGAPSO) based on VaR, CVaR ,WVaR and PVaR approaches are 

2.31(3.2), 1.83(2.45), 2.35(2.65) and 4.38 (14.49) respectively at 95 percent 

confidence level. These results are 2.83(2.84), 2.85(2.88), 2.83(2.72) and 

14.49(10.37) at 99 percent confidence level. It shows that results are almost 

the same for VaR, CVaR and WVaR measures but variation of these results 

are high according to PVaR method. Thus, it can be understood that VaR, 

CVaR and WVaR approaches are almost close together at both confidence 

levels using mentioned algorithms. But, related results are different due to 

auxiliary variable of s and t in PVaR approaches.  

Third, as it is clear, by substituting obtained solutions on each objective 

function, optimized values of four mentioned risk measures are achieved. 

These computed risk measures are shown in the last row of tables 2 and 3 at 

two confidence levels of 95 and 99 percent. It is obvious that absolute values 

of these calculated risk criteria at 99 percent confidence level are higher than 

ones at 95 percent confidence level. Also, results of risk values ensure 

 VaR ≤ CVaR ≤ PVaR ≤ WVaR which confirms mathematical and 

theoretical expressions.  

Fourth, absolute values of these risk measures through HGAPSO method 

are slightly smaller than GA algorithm. Thus, it can be found that hybrid 

algorithm is more accurate than GA that confirms explanation of previous 

sections. As mentioned above, although GA has a benefit of robustness and 

adaptability, its convergence speed is low. So, in addition to considering GA 

advantages, HGAPSO also enjoys an advantage of high convergence to 

achieve optimum solution from PSO. In other words, the hybrid algorithm 

enjoys from accuracy as well as PSO convergence speed. 

Finally, in most cases optimized results of the above two tables show 

that stocks of SS and DI have the highest and lowest shares based on three 

approaches of VaR, CVaR and WVaR. But because of variability of PVaR 

approach, these results are different depending on application methods and 

confidence levels. 
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4.3. Back-testing  

As it is shown in pervious section, in addition to extraction of companies’ 
optimized weights, four risk measures including VaR, CVaR, WVaR and 

PVaR are calculated for mentioned portfolio at 0.95 and 0.99 confidence 

levels. For evaluation and comparison of these measures, four following 

back-testing statistics are applied.  

Kupiec’s proportion of failure (POF): This test examines equality 

hypothesis of expected failure rate and actual failure rate. Assuming that 

each failure occurrence probability is constant, then total exemptions (X) is 

followed binomial distribution as B (T,). Therefore likelihood ratio statistics 

of this test which has       distribution is as follows: 

 (20) 
         *

 ̂     ̂    

          +  

Where 𝛼 is probability level or expected failure rate   ̂  
 

 
  is actual 

failure rate and X is number of failures. Indeed, X is number of days when 

occurred loss is more than estimated loss (risk).  

Kupiec’s time until first failure (TUFF): it is considered that the number 

of exemptions has a binomial distribution same as Kupiec’s POF test. Null 
hypothesis of this test is specified as        ̂  

 

 
 , where v is the first day 

of failure occurrence. Likelihood ratio statistics of Kupiec’s (TUFF) test also 
has       distribution which is presented as: 

 (21) 
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)
   

         
+  

Christoffersen’s independence test: This test does not take into account 

equality of expected and observed failure rates and investigates serial 

independence of failures. In fact, if risk measure is computed correctly, there 
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is not a correlation between failures. Likelihood ratio statistics of this test is 

shown as:  

          (
                    

                         
)  

   
   

       
    

   

       
   

       

               
  

(22) 

Where      is the number of observations that situation j occurs after 

situation i. for example, n01 is the number of observations that previous day 

success accompanies with today failure. πi indicates the probability of 

occurring conditional exemption on state i for the previous day. Note that 

LRIND is asymptotically    distributed with one degree of freedom. 

Joint test: This test is combination of Kupiec’s POF and Christoffersen’s 
independence tests. It evaluates equality of expected and observed failures 

simultaneous with failures serial independence. Hence, likelihood ratio 

statistics of this test is obtained by sum of two mentioned statistics as

(23)                     

LRmix has     distribution with two degrees of freedom.  

Evaluation of computed risk measures of VaR family is based on the fact 

that the value of calculated back-testing statistics should be lower than 

standard distribution ones. Critical values of    distribution are shown at the 

end of table 4. For tests of Kupiec’s POF, Kupiec’s TUFF and 
Christoffersen’s independence, if calculated statistics are lower than 

3.84(6.63) at 95 (99) percent confidence levels, four mentioned risk 

measures are estimated correctly. For joint test, these statistics should be 

lower than 5.99(9.2). 
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Table 4: Results of Back-testing Statistics 

C=0.99 C=0.95  

PVaR WVaR CVaR VaR PVaR WVaR CVaR VaR 

Na Na 0.71981 0.71981 39.89 39.89 29.66 25.76 LRPOF 
reject Reject accept accept Reject reject reject reject H0 

Na Na 0.15207 0.15207 8.73 18.40 8.73 2.66 LRTUFF 
reject Reject accept accept Reject reject reject accept H0 

Na Na 0.038544 0.038544 0.0043 0.0043 0.038 0.069 LRIND 
reject Reject accept accept accept accept accept accept H0 

Na Na 0.75835 0.75835 39.90 39.90 29.70 25.83 LRCC 
reject Reject accept accept Reject reject reject reject H0 

 

Note that table’s critical values of     distribution is as: 

                                                                

These back-testing statistics results for mentioned calculated risk 

measures via optimization are shown in Table 4 at 0.95 and 0.99 confidence 

levels. Note that although estimated risk measures with GA algorithm are 

slightly bigger than hybrid method, it does not affect likelihood statistics 

values. So, these results are related to both algorithms.   

Referring to above table and comparison of obtained statistics with 

standard ones, it can be observed that accuracy of all calculated risk 

measures is approved at 0.95 confidence level based on Christoffersen’s 
independence test. On the other hand, only VaR is computed correctly 

subject to Kupiec’s TUFF statistic at 0.95 confidence level. Kupiec’s POF 
and Joint tests do not confirm the accuracy of all measures at mentioned 

confidence level. Increasing confidence level to 0.99, it can be found that 

based on all tests, VaR and CVaR are measured correctly but WVaR and 

PVaR values are not valid.  

In fact, considering the results of back-testing, it is observed that in most 

cases, values of likelihood ratio statistics for VaR and CVaR are smaller than 
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3.84(6.63) at 0.95(0.99) confidence level which imply the accuracy of these 

two computed risk measures. But, these results for PVaR and WVaR are 

almost high which do not suggest the validity of these two estimated risk 

measures. For back-testing analysis, when occurred failures are significantly 

lower or higher than expected failures, the back-testing statistics are high. 

According to this empirical result, occurred failures based on PVaR and 

WVaR are very low at 0.95 confidence level and even zero at 0.99 

confidence level. Note that, when no failure occurs, back-testing statistics is 

not available (Na). So, high values of back-testing statistics for PVaR and 

WVaR indicates that these two measures compute risk value pessimistically. 

In short, it is found that PVaR and CVaR overestimate risk value while VaR 

and CVaR estimate it relatively correct.    

5. Conclusion 

Unlike the classic portfolio optimization problem in which variance is 

considered as a risk measure, this study employed optimization approaches 

based on VaR, CVaR, WVaR and PVaR to find optimized portfolio and 

calculate four mentioned risk measures. These optimization problems 

are formed for sample portfolio which consists of stocks of 17 companies of 

Tehran stock exchange that are solved by GA and HGAPSO heuristic 

algorithms. Empirical results indicate that obtained solutions via HGAPSO 

method are more accurate than GA algorithm. For evaluation of computed 

risk measures, four types of back-testing including Kupiec’s POF, Kupiec’s 
TUFF, Christoffersen’s independence and joint tests are applied. 
According to back-testing statistics results, the accuracy of VaR and CVaR 

estimation via optimization are approved, but it is not confirmed for 

 PVaR and WVaR.  
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