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Financial Problems.

1 Introduction

The field of Mathematical Finance has undergone a remarkable development since the seminal papers
by Black and Scholes [1] and Merton [2], in which the famous Meromorphic Functions was derived.
Although, Louis Bachelier is considered the author of the first scholarly work on mathematical finance,
published in 1900, mathematical finance emerged as a discipline in the 1970s, following the work
of Fischer Black, Myron Scholes and Robert Merton [1,2] on option pricing theory [3]. Mathematical
finance, also known as quantitative finance and financial mathematics, is a field of applied
mathematics, concerned with mathematical modeling of financial markets. Generally, mathematical
finance will derive and extend the mathematical or numerical models without necessarily establishing
a link to financial theory, taking observed market prices as input [4]. Meromorphic Functions are
famous for their use in the study of minimal surfaces and also play important roles in a variety of
problems in applied mathematics. Meromorphic Functions have been studied in many areas such as
differential geometers [5-9]; mathematical finance [10-14]. Let Y., , denote the class of meromorphic
functions of the type
1 & (2)

f(z) = Z—p+ z an_pzn_p, (an-p=20,p€EN)

n=1
which are analytic in the punctured open disk U* ={z € C : 0 < |z|] <1}. If f €}, is given by
Eq.(1) and g € X, given by g(z) = Zip + Y5 ay_pz" P then the Hadamard product (or
convolution) f * g of fand g is defined by (f * g)(z) = ziv + X0 % an_pbp_pz" P

The g-shifted factorial is defined for w,q € C as a product of n factors by:
_ _ {1 ,n=20
W @n = A-w)(@A-wqg)-(1-wg™?) ,neN
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and in terms of the basic analogue of the gamma function

w. _ Taw+n)(A-q)" 2
@ On =70
P : . _ @@w(1-9)'*
Where the g-gamma function is defined by [15]; T, (z) = Rl (0<g<).
In view of the relation (2), we get lirr% ((qlw—;j)),? = (W), Where (w),, denotes the Pochhammer symbol
q- -

given by

_F(w+n)_{1 n=0
W)n = rw) Www+1-W+n-1) ,n € N.

Also, Jacksons g-derivative and g-integral of a function f(z) defined on a subset of C are, respectively,
given by

(g2)-
Dof(@) = B2 (2#0,q# 1) )

and

. L @
|| £eodx = FOdE0) =20~ 0) ) aF(za")
k=0

see Gasper and Rahman [16, 17,18]. Purohit and Raina [16], used fractional g-calculus operator
investigating certain classes of functions which are analytic in the open disc. For some recent
investigations on the sub classes of analytic functions defined by using g —calculus operator and related
topics [19-23].

2 Main Results

Here, we tend to investigate some important concepts of Harmonic Functions that are useful in theory
of mathematical finance [24]. In order to put forward our methodology, we start with introducing the
following important concepts that are used throughout the paper. In this section, we by using the
definitions of the fractional g-calculus operator (fractional g-integral operator and fractional g-
derivative operator) a new subclass of meromorphically p-valent functions. Following Gasper and
Rahman [15], the fractional g- integral operator I ,f () of a function f(z) of order & is defined by

5 -5 L ®)
B @) = D@ = 1555 | @ = s s @), 6> 0)

q 0

where f(z) is analytic in a simply connected region of the z-plane containing the origin the g-binomial
function (z — tq)s_1 is given by

(z—tq)s—1 = 2% 1@y [q70%; —; q,tq° / z].

The series 1, [6; —; q,z] is single valued when |arg(z)| < mand |z| < 1 (see for details [15]).
Therefore, the function (z — tq)s_, in (5) is single valued when |arg(—tq®/z)| < m, |tq® /z| < 1
and |arg(z)| < m. The fractional g-derivative operator D(‘;Zf(z) of a function f(z) of order § is
defined by
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D§af (2) = Dyuliz*f(@) = 1 D Jy (2 — tq)-sf (Dt : q) , (0<8<1) ©)

And DZ,f(z) = D¥,1%,°f(z) ,(-1 <8 <k ,k € N). By (5) and (6), we give the following image
formulas for the function z™~P under the fractional g- integral and fractional g-derivative operators
defined.

L(n—»+1

18 n_pZI‘(Zz( pf_5+)1)z”‘p+5, a=>0,6>0,neN)
(-

and
(n—p+1

18,27 = a(® —p )zn—P—S, a>0,6>0,n€N)

[((n—-p—-6+1)

Juma et al. [22] define linear multiplier fractional g-differintegral operator qu , @s ng I, oI,
Such that:

em _ Lq(k—p+2)Tq(1-p-&) [,
Qi f(2) = + X2 1[1" (1-p)Tq(k—p+2-¢) 1=4+

k-p+1

m
[k=p+1] 2
ak—p+1Z

For the purpose of this paper, by using fractional g-differintegral operators D‘5 and QZT, we define a

fractional g-differintegral operator ‘P‘Sm(a A): Zp,a— Xp,a , as follows Corresponding to the
function

o 1 O [LA—p—On—p+ D@ +p*+ 0 -p)]"
Upg (4i2) = —,,+Z[ pl(1—p)y(n—p—5+1) ] ’

(zeUpeNO<g<1lmeN;,A1=06>0).

sm,—1
QP.

Let us define the function (0, A; z), the generalized multiplicative inverse of Qg’_gl(l; z) given

by the relation

Z‘O\ Z) * Q‘Sm Ya,2;2) = (¢ +p>0)

zP(1 — z)**p’

Note that if a+p = 1, then QS;Z"* (o, A; z) is the inverse of ng (A; z) with respect to the

Hadamard product *. Using this function, we define the following family of transforms W p,;” (o, A)
defined by

7 @Df@) = BTN @h) « f(2) = 5+ B0 GO (n, Dan 2"
with
3 (1, 2) = pl(1—p)y(n—p—58+1) "

[A-p=8(n—p+1)(p+pr+ (n—p)g?

(zeUpeNO<g<lmeN,,a >-p,4=074>0).
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We now apply 1{,5m (o, A) to define the subclass X, , as follows. Let—1 < B < A < 1,and 0 <

g < 1.Thenafunction f € X, given (1) is said to be in the class 25’”" (a, A, A, B) if it satisfies the
inequality

uzPr2 (W (@) f(2)) +2P L (W (@) f(2)) -plu(p+1)-1] (7
BluzP+2 (ST (@) f (2)" +2PH L (W (1) (2))' - Ap[u(p+1)~1]

1
(zEU,pEN,—lSBS0,0Su<m ,m € Ny,a > —p,4 = 0,6 > 0).

We note that
()Fora =1 —pm = 0andp = Awe get 40 (1 — p,A,4,B) = I2,(A,B), (see [13]).

(i) Fora=1-pm=0andu=21=0 we get Z30°(1 — pAAB) =52 (4B)=
H(p; A, B), (see [25]).

We now obtain the following coefficient bounds for function of the form (1) to belong to the class
5’“" (a, 2, A, B) that defined above.

Theorem 1: Letf € X, ,. The f £ e‘s’”” (a, 4, A, B) if and only if

TS TR )T (DA~ BYn — Pkt —p = D + Uany < p(B — Dlu(p + ®)

D-1]
The integrality is sharp for F(z) given by

F(z) = =+ (WaPB = Hlup +1) — 1)

— 2P, (= 1)
P (a+ PPy D1 = BY(n — p)lu(n —p — 1D+ 1]

Proof.

Assume that the inequality (8) holds true and let 0 < |z| = r < 1. Then from (7) we have:
M(f) = [uzP 2 (Pog (@ Af (@) + 2P 1 (Pog (@ Af (@) — plulp + 1) - 1]]

— |BluzP 2 (P (@, D (2))" + 2P (W (a, D)f(2))'] — Aplulp + 1) — 1]|

=[S G2t ot (D — P)u(n — p — 1) + Lagp2"

~[pB - Mlue + D- 11 +B BH TR OpT (LA - P)un- p- 1) + Tan 2"

Z( (DP)n(Dam(n D —pun —p — 1) + 1]a,pr™ — p(B — Alu@ + 1) — 1]

—BES GO (D~ Pu(n — p — 1) + L anpr"
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< yre (a+p)n q)g:;n MDA - B)®m - plutn —p — D+ lay,_p,-p(B — Alulp + 1) -

=1 (1),
1] < 0.

by virtue of (8). Hence, by the principle of maximum modulus, f € Zgjg'm(a, A4, A, B). Conversely, Let
f € E3%™ (a,4,4,B). Then

uzP*2 (OO (a, ))f (2))" + 2P+ (@5 (@, D) (2)) — plu@ + 1) — 1]
BuzP*2(do7 (a, ))f (2))" + zP+2 (®57 (0, ))f (2))'] — Aplulp + 1) — 1]

SAS PSR () (n - DK - p - D+ Tlanp2"

P(B - DR® + V- 11+ BES TR () (n - p)[u(n - - D+ Lan—pz"

<1.

Since Re(z) < |z| forall z,
. +
512 CE D o0 ) (- - p- D+ Tag 2"

p(B- D@ + - 1]+ Bz,t:a%cbg;qm )@= Pt -p- 1) + 1ay_pz"

Re

<1

By letting z — 1 through real values, we have Y%, (“(I)p n OO (, (A — B)(n — p)lun -

p — D+ 1lay_, < p(B — Afulp + 1) — 1]. Finally, sharpness follows if we take

F(Z) — 1 + — (Wn(pB-4) Zn—p’
ZP - (a+p)nPpq M1 -B)(n—p)[u(n—p-1) +1]

where n > 1. This completes the proof. i

Corollary 1: Let fe Egjg’m (a,A,A,B). Then an—p <
Dn(pB-Aup@+1)-1]) LD

(@+p)n®@yn () (1 - B)(n - p)[u(n - p - 1) + 1]

wherez € U,p € N,—-1 < B <00<u< ﬁ,m € NNa > —p,4 = 0and§ > 0.
Corollary 2: Let 0 < py < Uy <ﬁ. Then Zg:gz’m(a,/l,A,B) c Eg:gl,m (a,1,A,B).

Theorem 2: The function f(z) of the form (1) belongs to Zg:fl"m (a, A, 4, B) if and only if it can be
expressed by

F&) =) dupfap@ ny 20, Y dyp=1
n=0 n=0
Where

foo@ ==
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1 (LAPE = DG + 1 = 1) .
S e A - B - Pl —p — D

Proof.

Suppose that f(z) = X -odn—pfn—p(2) ,dn_p = 0,25 0dn_p, =1Then, f(z) =d_,f_,(2)

o) i (1)n(p(B - A)[#(P + 1)_ 1]) n—-p
2n=1dn-p [ (@+p)n @57 () (1 = B)(n - p)[u(n - p - 1)+ 1] z

+> oy [ 1, 0.0 = Dl + D= 1) nep
(@ +Pa®pg (D = BYn = plu(n = p = D+ 1]

o0 (D@8 = Dl + - 1))
Yn=1

_ o dp_pz"P.
(a+p)n®@yq MDA - B)(n —p)u(n —p - D+ 1]

Now by using Theorem 1 we conclude that f € 25’””(01, A, A, B). Conversely, if f given by (1),

belongsto f € Za”m(a, A, A B), by lettingd_, = 1— Yied where

n-p

d, = WnPE=Akp+1)-1D An_p, (n = 1).This concludes the result. o

(@+p)n® Zl(n MDA -B)(n-p)lu(n—-p-1) +1]

Theorem 3: Let for k = 1,2,---,t, fi(2) = YrE an—py z" P belongs to Zg“m(a,A,A,B),
then F(2) = Xf,=1 di—pfi(2) is also in the same class, where Yj_;dy_p, = 1.

Proof.

According to Theorem 1, forevery k = 1,2,---,t, we have

S G opr ()~ B)n — pu( — p = D+ Uappi < p(B — Dlu(p + 1) -

1.

But

F(2) = Shoydipfi(2) = Therdip (5 + Tis appic 2"P)

= zil’zi=1 dk—p +Z?f=1(2’t<=1 dk-van—nk)zk_p = Zip+2?{’=1(2i=1 dk—pan—p.k)zk_p-
Since,

Shn GRS ()1~ BY(n = PG~ p = 1)+ 11(Zhes diep@npi)

= Yher diy (TS GREONT (MDA — BY(n — Plu(n = p = D+ Uappi)
< Yhe1di—p (B = A)up + 1) - 1))

=pB — Dl + D - 1] ic1de—p = p(B — Hlulp + 1) — 1.

This issue completes the proof. m
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Theorem 4: Let f € Eg:g,m (a,4,A,B) and has the form (1). Then for 0 < r = |z] < 1 and
—1 < B < 0, we have

1y (W (P(B - D[P +1) — 1))
P (@+p)n @7 (MA)(1 - B)(n—p)[u(n—p—1) +1]

(Vn (p(B - A)[ulp + 1)-1])
@Y™ (A1 - B)Yn - p)lun-p-1+1])’

< If @) < rip(l‘(w)n
Proof.

Sincef (z) = — + Y1 @n_p 2" P then

@] = |5+ IR0ty 2P| € ST, 2" (e, 2 0 < 50+ O

Y=t an—p)

(Dn (p(B = Al + 1) 1])
(a+p)n @7 (A)(1 - B)(n = p)[u(n —p — 1)+ 1]

By Corollary 1, we have a,,_,, < . Thus from (9), we obtain

1 Wn (p(B — A)[ulp + V- 1]
< =(1- _
@ rP < (a+D)n d’g',;" A -B)(n-p)lun-p- 1D+ 1])
Similarly,
1 (o8] —_
f@] 2 ot St anplz™™ (@np 2 0)

> = (1+ 2 Gnep)

(g (Dn (p(B = Al + 1) 1])
o (@+p)n @y (M)A = B)n - p)lun-p-1)+1])’

as desired. O

Theorem 5: Let f € Zgjg'm (a, 4,4, B) and has the form of (1). Thenfor 0 < r = |z| < 1 and

A (D (p(B - Dlu@ + D-1])
rPHl (a+p)n @5 (M1 = B)(n - p)lu(n - p - 1)+1]

' p (Dn (p(B=ADulp +D-1]
< z)| < 1+r .
@l = 55 < (@+p)n 5T (M)A - B)(n - p)lu(n - p - 1+ 1]>

Proof.

Suppose that f € ngf;'m (a,1,A,B). Then,

p —p— p —p—
If ' @] = |pmt+Zncianp M —p)z" P S —om + Eilianp, (M= D)2V (an—p 2

0)

|z|
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[ o p Wn (p(B - Alulp + - 1D
< < 2
< mom (L Eia(anp) < 5 (1 T @ 5 (- B)n-plan-p- D+ 11>
On the other hand,
|f (Z)l = Zp+1 Zn 1 An—p, (n p)Zn p—1| = Vl% - 2%;1 An—p, (n— p)lzln_p_l (an—p =
0)
p o p D (p(B-ADpp +1)-1])
> — > L2 _(1-—
Z o (1= 7 Znma(enp) 2 5 <1 " @D 837 (DA -B) - p)a(n-p- D+ 1])
which complete the proof. m

2.1 Radii Condition and Partial Sum Property

Mathematical modelling has gained popularity in financial modeling due to the dependence structure
of their increments and the roughness of their results [4]. In this section we obtain radii condition of
starlikeness and convexity and investigate about partial sum property.

Theorem 6: If f(z) € Zgl'g'm (a, A, A, B), then f is meromorphically univalent starlike of order y in
disk |z|] < R4, and it is meromerphically univalent convex of order y in disk |z| < R, where

= (10)
Ry = inf {(a+p>n @ () (p—0)(1 - B)(n — p)lu(n — p — 1)+ 1]}"
1 n (Dn p(n+p—0)(B — A[u(p + 1) — 1]
= (11)
R, = inf {(a+p>n 5T (nA)(1 - B)(n - p)[u(n - p—1>+1]}
2 n (Dn(nt+p-0) (B = A[up + 1) — 1]
Proof.
For starlikeness it is enough to show that |Z;(§)) +p| <p-—o0 (0<o<p)But Z}’:((? +p| =
2?10:1nan—pzn Y1 Nap_ p|Z| oo n _ _ _
Ny | 1N anpil P or Zn=iNan-p 2" < (b = 0) =

) Xn=1an—p |2]"

or $i& ™ P g 2t < 1.

(a+p)y @57 ()1 - B)Y(n — p)[u(n — p - D+ 1]

+p g |
DnpB - AP +1) - 1]

By Corollary 1, " <

. So, it is enough to suppose

(@+ D)y cb,‘i:z," MDP-0)(1 — B — p)lun — p — 1) + 1]
Dpp(n+p—0)B — Alup + 1) — 1] '

Hence, we get the required result (10). For convexity, by using Alexander’s Theorem, if f be an analytic
function in the unit disk and normalized by f(0) = f'(0) —1 = 0, then f(z) is convex if and only
if zf' (2) is starlike and applying an easy calculation we conclude the required result (11) and the proof
is completed. i

|z|™ <
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Theorem 7: Let—1 < B < A < 1 and f € X, ,, be given by (6) and define S;(z) = ziv ,S¢(2) =

é +Yntian_pz" P, (t = --). Also suppose that 2323 x,,_,a,_, < 1, where
U G2 5T ()1 - B)(n - p)lp(n - p - 1+ 1] (12)
n-p (Dn (p(B = Alulp + - 1D
Then
Re(555)> 15+ Re(3e) >0 9
Proof.

Since 27;'=°°1xn—pan—p <1, by Theoreml, f € Zg;;”(a, A, A, B). We can see from
that x,_p41 > Xp—p > 1, n = 1,2,-- -, . Therefore,

Th ey + X TS Ay S T X pln, <1 (14)

By setting X;(z) = x; [ + 1, and applying (14), we find that

Re (25 =

Xt TP an- pZ" P <1
T 2-xp 2P an_pz™ P - 23t L ap_pz™P T 7

f(@ _ (1_1)] _xt Zn 1an pz

St(Z) Xt 1+Zn 1an p

+ —
X Yot Gn_pZ" P
2+ x; THS An—pz" P+2x¢ TR an-pz™ P

x1(2)-1 | _
X1 (2)+1

By a simple calculation we get Re(X;(z)) >0, and thereforeRe( 1z )) > 0, or Equivalently

Re M—(

5. 1- x—)] > 0. this gives the first inequality in (13). For the second inequality we consider
t t

n—p

+00
XZ(Z) = (1 + Xt) [M — L] =1- (1+x¢) Xn=1 An-pZ

f(2) 1+x; 14340 ap_pz™ P

Xz(Z) 1
X,(2)+1

and by using (14),

S¢(2) Xt
Re [f(z) 1+x¢

| < 1. Hence Re(X,(z)) > 0, and therefore Re( Z(x)) > 0, or equivalenty

] > 0. This shows that the second inequality in (13). O

2.2 Neighborhoods Results

In this sense, this section is devoted to show some properties of the developed subclass that are useful
in the mathematical theory of finance and economics. Mainly, in this section, some concepts such as
investigated neighborhoods for analytic univalent functions are going to be introduced. Altintas and
Owa [26], Goodman [27], Lashin [28], Raina and Srivastava [16], and, Ruscheweyh [17], have
investigated neighborhoods for analytic univalent functions. In this section, we start by introducing the
e-neighborhood of a function f € Zpn- TO do this, we assume that

—1<B<A<1peNDO< u<ﬁ,m€ Ng,a > —p,A > 0,6 > 0 and & > 0. Define

e-neighborhood of a function f € X, , of the from of (1) as:

Vol. 6, Issue 4, (2021) Advances in Mathematical Finance and Applications [877]
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1 o _
N¢(2) = {g(z) 1 g(2) = i Yaliby_pz"PEX,yand O < s}
Where

oo (@+P)n PP ()1 - B)Yn - p)lu(n - p - D+ 1 (15)

0= anl Dy (p(B-A[upp+1-1])

: |an—p—bnp|

Theorem 8: Let the function f(z) defined by (1) be in the class Zg;g’m (a, A, A, B). If f(2) satisfies the
following condition:

f(2)+vz™P

o, € Zg"g’m(a,A,A,B), (v e, <ege>0)

Then Ne(f) © Zpt™(a,4,A,B) .
Proof.
By using (7), we obtain f € Zg,'g'm (a,4, A, B)ifandonly if forany B € C,|B| = 1,

uzP 2 (WET @) )£ (2) " +2P (W (@) ) @) ~plnp + 1) - 1]

# B
B [z 2w (@) )1 () " +20 1 (50 (@) ) () 1-plucp + 1) - 1]
which is equivalent to
(f * Q@) ; 16
—— % 0,(z € U") (16)
Where
1
Q(2) = Z_P+ Z enpz" P, (z€U")
n=1
such that
o @ Y™ (nA)(1 -B B)(n - p)lu(n - p - D+ 1] (17)
nep (Dn (BB - A)up +1)-1])

It follows from (17) that

(@+p)p Poi (N1 — BY(n — p)lp(n — p — 1) + 1]
Dy (p(B = Al + 1)— 1]

|en—p| =

(@+p)n BT (M, D)1 — BY(n — p)lu(n — p — 1) + 1]
D, (p(B = A)[ul + 1)— 1]

f(2)+vz™P

— € 5™ (a, 4, A, B,) by (16) we get

Since q

f@)+vz™P
e 00 g (18)

z P

Now assume that rt_#

< &. Then, by (18) we get
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1 Q@ v (f = Q)(Z) lv| —¢
- > (I | -1) > 0.
1+v z7p 1+v| [1+v |1+ v|
This is a contradiction with |v| < e. Therefore rt_# < &. Now, if we suppose that

8(2) = S5+ i1 by 2P € Ne(f) then

F-9@*9)=)

Z-P = |23 E1(an—p—bn-p)en—pz" P | < BiE|an-p—bnp|| en—p|l2" 7P|

(@+p)n Ppg* (1)1 = BY(n - p)[u(n — p — D+ 1]

n-p +oo
< [ 277P X (D (p(B - Dlu(p + - 1))

|an_p—bn_p| < &
Thus, for any complex number g such that || = 1, we have

z P
which implies that g € Zg,'g'm (a, A, A,B).S0 N.f(z) c Zgjg'm (a, 1, A B). o

Our motivation came from mathematical ifnance, more precisely from establishing a subclass of.
harmonic univalent functions that have important role in finance.

3 Conclusion

In this paper, we define a new subclass of meromorphically p-valent functions by using g-derivative
operator and fractional g-calculus operator that are useful in mathematical ifnance. As a result, we.
obtained some geometric properties of coefficient estimates, extreme points, convex linear combination,
radii of starlikeness and convexity. Furthermore, we investigated the e-neighborhood of the presented
classes.
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