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Abstract 

Portfolio selection is one of the most important financial and investment issues. 

Portfolio selection seeks to allocate a predetermined capital (wealth) over one 

or multiple time periods between assets and stocks in a such way that the 

wealth of investor (portfolio owner) is maximized the risks are minimized. In 

the paper, we first propose a mathematical programming model for Portfolio 

selection to maximize the minimum amount Sharpe ratios of portfolio in all 

periods (max-min problem). Then, due to the uncertain property of the input 

parameters of such a problem, a robust possibilistic programming model (based 

on necessity theory) has been developed, which is capable of adjusting the 

robust degree of output decisions to the uncertainty of the parameters. The 

proposed model has been tested on 27 companies active in the Tehran stock 

market. At the end, the results of the model demonestrate the good 

performance of the robust possibilistic programming model. 

Keywords: Portfolio Optimization, Sharpe ratio, Robust Possibilistic 

Programming. 
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Introduction 

Portfolio formation and diversification of assets are among the most 

fundamental strategies for reducing and controlling investment risks. A good 

Portfolio selection with high returns and low risk is demanded by all investors. 

Hence, there are many models for Portfolio selection and many efforts have 

been made to improve these models. In fact, Portfolio selection of assets is one 

of the most important issues in the field of investment management.  

Several optimization methods have been developed following 

Markowitz's innovation and his minimum risk model. These methods have 

tried to generate the highest quality portfolios in terms of risk and return, by 

adding more metrics in the target function and intelligent constraints. In recent 

years, in addition to the. optimization of portfolios’ risk and return, the 
discussion of the sustainability of results and the need for a gradual change in 

the weight of assets in the investment portfolio has been raised, given the 

existence of an uncertainty factor in the level of risk and return of financial 

assets. Also, using stochastic, fuzzy logic and robustification approaches, 

attempts have been made to optimize the level of uncertainty in addition to 

achieving the optimal combination of risk and return. Therefore, risk and return 

both play a vital role in the investment portfolio, so in designing each model 

for optimization, it is necessary to consider return and risk maximization in the 

target function simultaneously. This can be done in the form of a Multi-

objective function or by targeting a measurement in a function that is a 

combination of risks and returns and to target the measurement of 

maximization/minimization. One approach is using sharpe; that is, a 

measurement having a risk and return at the same time. Therefore, the Sharpe 

statistics/ratio was selected. 

     

  
 

   : Portfolio return 

   : Risk-free rate of return 

   : Portfolio Standard deviation (risk measurement) 

In addition to being considered as an appropriate ratio for assessing the 

relative performance of financial assets, the Sharpe ratio (sharpe,1963) 

maximization in the optimization portfolio model is equivalent to minimizing 

the risk of falling investment returns below a certain limit (Roy's Safety-First) 

in the most conservative mode; that is, when the form of the distribution 
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function is not known, and it is necessary to use Chebyshev inequality, where 

even the worst types of distributions (distributions with negative skewness, 

etc.) can be applied to the model, and inject robustification to the model in 

practice. 

In another aspect, due to the competitive and risky space in the stock 

market, decision-making is often faced with a lack of information or uncertain 

information; therefore, the model programming should take this into account. 

Robust optimization is presented in recent years to deal with uncertainty, in 

which the optimization is addressed when the worst happens. The Robust 

approach was proposed to solve optimization problems with data uncertainty 

and has recently been widely explored and developed. The main advantages of 

this approach are as follows (Alem, Morabito, 2012): 
1. Robust optimization is easier than the probabilistic approach in terms of solving 

the model. 

2. There is no need for clear knowledge of the possibilistic distribution of data with 

uncertainty. 

In the subject matter discussed in this paper, due to the incompleteness 

and unavailability of information, we face uncertainty in data that is of a kind 

of epistemic uncertainty (Asadujjaman,2019), therefore, robust possibilistic 

programming has been used to model the problem. It is superior to possibilistic 

programming for the following reasons: 
1. In robust optimization, the confidence level of constraint satisfaction is 

determined by the model itself and its value is optimal, 

2. In robust optimization, the final answer has Optimality Robustness and Feasibility 

Robustness 

3. Considering the objective function deviations due to the uncertainty of the 

parameters, it avoids heavy and irreparable costs for managers and investors. In 

the case of possibilistic programming, the following issues are not taken into 

consideration. 

Background and Literature review 

So far, many research have been done in the optimization of stock portfolios 

due to the increasing development of global financial markets and the impact 

of this optimization on economic returns and profits.  

In 2009, Huang used the combination of Fuzzy c-means (FCM), a 

variable-precision rough set (VPRS) model, Autoregressive with exogenous 

input (ARX) and a gray-system theory for Portfolio selection investing. 

Soleimani et al. (2009) presented a genetic algorithm-based approach 
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with integer constraints and the market share of various industries to optimize 

Markowitz's MV model. 

Chang et al. (2009) introduced a genetic algorithm to solve optimization 

problems with different risk measurements on the model. 

Tiriaki et al. (2009) combined the fuzzy AHP with Portfolio selection. 

The main approach in AHP was to design and implement a model for 

combining corporate risk behavior with the investor risk class (low, medium 

and high), investor goals and internal and external factors. 

Montazar et al. (2010) proposed a method for designing a fuzzy expert 

system for recommending and introducing investment portfolios in the Tehran 

Stock Exchange. 

Zymler et al. (2011) combine a robust optimization portfolio with a 

classic insurance portfolio model to cover risks from rare events. 

Sajjadi and Seyyed Hosseini (2011) proposed a multi-period dynamic 

fuzzy model for Portfolio Selection of stocks, in which borrowing and lending 

are possible in real terms (different rates of cash borrowing and lending). 

Jun and Lu (2012) used a Mini-Max -based robust ranking model in 

integer programming. 

The constraints in this model are generated using a network streaming 

model, and ultimately used for portfolio optimization. 

Looking deeper into robust investment portfolios, Fabozzi et.al. (2014) 

analyzed the behavior of these portfolios formed with Robust Optimization. 

Their research suggested that by increasing robust optimization of investment, 

optimal weights would be directed towards that portfolio, whose variance is 

described to the highest by specific factors. 

Wu Chang Kim et al. (2014) introduced a new approach to the robustation 

portfolio of the minimum variance to control the kurtosis and skewness (third 

and fourth torque) without the aid of higher torques. The main idea in this 

article is that the robust investment portfolio, in the worst-case scenario, is 

prone to skewness and opposed to kurtosis. 

Pishvaee, Razmi, and Torabi (2012) used robust possibilistic 

programming to design a supply chain. 

Pishvaee and Kalantari (2012) also used robust possibilistic programming 

for the primary programming of the drug supply chain. 
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Millt and Takkapi (2015) presented robust models to meet the needs of 

investors looking for a global minimum variance portfolio and a rule against 

robust uncertainty. 

In this paper, the Monte Carlo simulation showed the robust portfolio 

superiority to unrobust portfolios in different dimensions of the risk and 

variance based adjusted return. They found that the robust investment portfolio 

had a minimum variance, lower turnover, and a Sharpe ratio compared to 

traditional portfolios. 

Zulfagar and Ayoub (2015), based on a study conducted on the Karachi 

stock exchange in the area of using the robust downside index, showed that the 

use of this statistics, especially in relation to assets whose curtailment curves 

are greater than those of kurtosis, are much better performing compared to 

Markowitz's Mean-Variance Model. 

Balabas and Balabas (2016) put forward the concept of ambiguity with 

risk in their paper to create a robust portfolio optimization model, and in 

particular to solve the shortcomings of capital asset pricing models. 

Han, Zia and Lee (2016) developed the robust asymmetric model of the 

absolute mean standard deviation that covers asymmetry in the returns 

distribution. 

They tested various strategies for robustification in emerging markets and 

falling markets and showed that the model was able to identify lucrative stocks. 

In the recent period, and since 2009, Some important points of foreign 

research include: 

A) Among the researches, the use of the Sharpe index as a performance 

measurement was very high and had a significant difference with other 

methods. The most significant measurements are CVAR, Torque, kurtosis, 

Alpha and Treynor ratio. 

B) Mathematical modeling, Fuzzy logic, and genetic algorithm are the 

most widely used algorithms to optimize portfolios of assets. Other algorithms 

include particle swarm optimization approach, quadrilateral programming 

model, expert system methodology and goal programming. 

Research gap  

The literature review identifies important research gaps. Despite decades of 

research on investment optimization and risk management, there is still no 

acceptable tool for risk measurement (The fundamental nature of risk in the 
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financial field has made it impossible to achieve such a model, since any model 

of a universal nature will change the behavior of investors in financial markets 

and ultimately reduce the performance of the model.) 

The development of new Investment Portfolio Selection approaches and 

models with more comprehensiveness that deals with diffrences, conflicts and 

is more flexible in dealing with the risk phenomenon (goals (with no definitive 

means to measure it)) is a perpetual gap. 

The research also aims to develop a new model with Robust Optimization 

and Fuzzy Logic as the goal of Investment Portfolio Selection. 

The question now is, what method for portfolio design (in terms of type, 

volume, and number of financial assets used in the portfolio) should be used in 

this model, which can maintain its credibility and efficiency over an acceptable 

time frame, despite the ongoing Volatilities of financial markets. 

None of the research on stock portfolio programming in uncertainty has 

used the robust possibilistic programming approach to deal with this 

issue.  Using this approach will make the model responses determined so that 

the feasibility robustness and optimality robustness are guaranteed and, 

consequently, the cost of implementing real-world decisions are reduced. 

Therefore, sources of uncertainty in the stock market should be effectively 

managed. And, in order to manage the uncertainty surrounding this 

environment and to have sufficient confidence in the results, robust 

programming must be done so that managers can be sure of their results and 

reduce the risk of their decision making. Programming robust is one of the new 

and reliable approaches.  

Research methodology 

Dantzig et al. (1993) proposed a standard framework for multi-period asset 

allocation problems. They assume risky assets in the capital market; trading 

periods, linear transaction costs for trading stock and one riskless asset e.g. 

risk-free deposit, and we have used this framework for portfolio making and 

objective function based on sharpe ratio. 

Non-deterministic model of stock portfolio optimization 

In the real world, especially in capital markets, many of the parameters of the 

problem are subject to change over time and the definitive assumption of these 

parameters during programming causes errors and problems. In the underlying 

question, it is assumed that the stock return parameter and, hence, Sharpe ratios 
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are not definite numbers and are predictable fuzzy numbers. Given the dynamic 

nature and Volatility of some of the important parameters (Sharpe ratio and 

stock return), the following equations provide a method for modeling imprecise 

parameters, and can be defined by their four prominent points (Pishvaee et al. 

2012): 

 ̃   (   ( )،   ( )،   ( )،   ( )) 

 ̃   (   ( )،   ( )،   ( )،   ( )) 

 ̃   represents the fuzzy sharpe ratio in time period t, and  ̃   represents 

fuzzy rate of return in time period t 

The robust possibilistic programming model 

The evaluation of definitive parameters for long-term decision-making is 

difficult and sometimes impossible. Even if one could estimate a possibilistic 

distribution function for these two parameters, these parameters may not have 

the same behavior as the past data. Different approaches, including possibilistic 

programming, have been used to address the uncertainty. It should be noted 

that the uncertainty parameters are suited for the possibilistic functions, such as 

triangular or trapezoidal possibilistic functions, based on inadequate data or 

knowledge and experience of modeling decision makers.  Therefore, in this 

paper, uncertain parameters are considered as fuzzy data at any time when it 

changes in a long-term programming horizon. If the possibilistic programming 

method is used, in order to control the level of confidence in creating these 

uncertain limits, the concept of decision can achieve the minimum level of 

assurance as a safe margin for any of these constraints. To do this, two fuzzy 

standard methods and practices are commonly used. It is worth noting that the 

optimistic fuzzy (NEC) indicates the optimistic probability level of an 

uncertain event involving uncertain parameters, while the pessimistic fuzzy 

(POS) indicates a pessimistic decision about an uncertain event. However, it is 

more conservative to use a pessimistic fuzzy, that is, we assume that the 

decision has a pessimistic (conservative) constraint to create uncertainties; 

Currently, based on the ambiguous parameters mentioned and the use of the 

expected value for the objective function and the pessimistic action for 

uncertain constraints, the obvious equivalent of the uncertain model can be 

formulated. To do this, one must first consider the abbreviation for the 

proposed model (tanaka,2000): 

      (1)                
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      (2)       

      (3)        

      (4)       

      (5)   { ، }،  ،     

 

It is assumed that vectors   and   are presented in the non-deterministic 

parameters in the above model. Regarding the generic non-deterministic finite 

program, the expected value of the pseudo-objective and fuzzy function is 

obtained, respectively, for dealing with the objective function and the uncertain 

limit. Now with the abbreviation, the basic possibilistic programming model is 

as follows: 

      (6)            

       

      (7)    { ̃    }    

      (8)    {    ̃  }    

      (9)       

    (10)     ،  ،  ،     

In which β and α control the minimum degree of certainty for establishing 
a non-deterministic constraint with a pessimistic decision-making approach. 

Regarding the distribution of the trapezium probability for ambiguous 

parameters, the general form of relations 6-10 can be defined as follows 

(tanaka,2000): 
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    (15)       

    (16)     ،  ،  ،     

In the possibilistic programming models, the minimum level of 

confidence to establish a non-deterministic constraint should be determined in 

terms of decision preferences. As seen, in the proposed model, the objective 

function is not sensitive to the deviation from its expected value, which means 

that gaining robust solutions in the possibilistic programming model is not 

guaranteed. In such cases, there may be a high risk in many real cases of 

decision-making, especially in strategic decisions that the robustness of the 

solution is vital. In fact, possibilistic programming has important shortcomings. 

In probabilistic programming, the constraint satisfaction level is a parameter 

determined by the decision maker, which does not optimize the confidence 

level. In the possibilistic programming model, there is little interest in the 

feasibility of robustness and optimality robustness. On the other hand, the lack 

of attention to the deviations of the objective function due to the uncertainty of 

the parameters can lead to irreversible costs for managers and organizations, 

and this must not be considered in possibilistic programming. Therefore, 

Pishvaee et al. (2012) proposed a robust optimizing program called robust 

possibilistic programming using the concept of robust optimization. This 

approach takes advantage of both robust optimization and possibilistic 

programming, which clearly distinguishes it from other programming 

uncertainty approaches. The robust possibilistic programming form in the 

previous model is as follows: 

    (17) 
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In the first objective function, equation 17 of the first expression refers to 

the expected value of the first objective function, using the mean values of the 

non-deterministic parameters of the model. The second, third, and fourth lines 

indicate the total cost of the deviation from the non-deterministic parameter. 

Hence, the parameter ξ is the weight function of the objective function, η1, and 

η2, the penalty for not estimating the uncertainty parameter. 

The parameters β and α represent the correction factor at the fuzzy 
numbers, based on pishvaee (2012) which should be between 0.5 and 1. 

research findings  

In this section, a dynamic model is designed to invest in a limited number of 

financial assets (Tehran Stock Exchange and risk-free deposits) over a period 

of time and with a specified cash budget and at the end of each period on the 

basis for risk and return data, investments reviewed, some sold, and some new 

assets purchased. One of the best benchmarks and measurements for the 

selection of a mass of stocks and financial assets is the Sharpe ratio of each 

share/asset. In order to achive real diversification, the weight assigned to each 

share in the portfolio of investment placed in a certain range (Floor and ceiling) 

(fabozzi,2007) has been determined, and we have attempted on designing and 

presenting a conservative portfolio consistent with the facts of real capital 

markets. 

Definitive modeling 

 
Sharpe ratio of i

th
 share in the time period t     

Return of i
th

 share in the time period t     

Cash profit (risk free deposit) in the time period t  (   )  

The maximum weight of the share 𝑖th in the portfolio in the 

time period t 
    

The minimum weight of the share 𝑖th in the portfolio in the 

time period t 
    

Number of authorized shares in the portfolio   

Purchase fee (about 0.5% of transaction value)    

Sales fee (about 0.6% of transaction value)    
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Decision variable 

Continuous variable   

Weight of i
th

 share in the time period t     

Cash amount in the time period t  (   )  

Standard deviation of portfolio in time period t    

Weight of i
th

 share in the time period t (The result of the 
   

∑    
   
   

)     

Sale amount of i
th

 share in the time period t     

Purchase amount of i
th

 share in the time period t     

Binary variable, (if       = 1 then      >0, and F_it   = 0 then 

   =0) 
    

 

 

(24)    (   
 

∑        (   ) 
 
   

√∑ ∑ (            )
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(25) 
       

   

∑    
   
   

       ،          ، ،  ، ، 𝑖   ، ،  ،  

(26)     (    (   ))  (   )         ،          . ،  ، ، 𝑖   ، ،  ،  

 

(27)  (   )  (   (   )(   )) (   )(   )  ∑(    )   

 

   

 ∑(    )   
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   ، ،  ،  

 

(28)    ∑   

 

   

   ،               ، ،  ،  

(29)  (   ) =1000 

(30)    ،   ،     ،          ، ،  ، ، 𝑖   ، ،  ،    

(31)       ،                  ، ،  ، ، 𝑖   ، ،  ،    
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Relation 24 represents the objective function of the model. Constraint 2٥ 

specifies that the weight of each share must not exceed the set minimum and 

maximum values. Constraint 2٦ defines the weight of each share in each 

period, based on the share weight in the previous period and the amount of the 

transaction. 

Constraint 2۷ specifies the amount of cash. Constraint 2۸ specifies upper 

and lower bound of the number of shares to be selected per period, Constraints 

30 and 31 also specify the range of decision variables. 

This model is nonlinear due to its objective function type and is not easily 

solvable by software packages. Therefore, with the help of changing the 

variable and some mathematical actions, this optimization model is applied to 

the change of target function and final shaping. 
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The proposed robust possibilistic programming model for stock portfolio 

optimization 

The purpose of this section is to allow constraint ٥٥ to exceed a certain level. 

Given that a pessimistic fuzzy is used to ensure greater reliability, then relation 

٥٥ is converted as follows: 

(41)    (∑∑ ̃     

 

   

 

   

  )     
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According to the above, the robust possibilistic programming model is as 

follows: 
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(49)  (   ) =1000 

(50)    ،   ،     ،          ، ،  ، ، 𝑖   ، ،  ،    

(51)       ،                  ، ،  ، ، 𝑖   ، ،  ،    

(52)      ،     

 

Relation 42 shows the objective function of robust possibilistic based on 

the proposed model. Constraints 43, 45 and 46 are also rewritten according to 

robust possibilistic programming rules. Other constraints are the same as the 

proposed definitive model. 

Computational results 

In this section, at first, 27 companies active on the iran stock market were 

selected in 6 time periods(weekly) for problem-solving.  The model was solved 

using GAMS software and BONMIN Solver and with the help of the 3 GB 

RAM, the Core 2 Duo CPU system and the outputs of the problem are also 

shown. The sensitivity analysis was performed on some of the parameters of 

the model and the objective function and decision variables were compared. 

This sensitivity analysis has two main objectives: a) Creating managerial 

insights and new scientific achievements; b) Ensuring the validity of the model 

(Sensitivity analysis on some parameters does not really mean much and does 

not lead to new knowledge. But this analysis and observing the change in the 

value of the objective function help us make sure that his model is valid and 

not technically problematic.) 

Problem-Solving in a Real Sample of Companies in Stock market 

Considering the uncertainty assumption of some of the model parameters 

such as Sharpe ratio of stock and stock returns at different time periods, the 

mentioned parameters are considered as a trapezoidal fuzzy. Other parameters 

of the model are based on the information available from the stock market. 

Table 1 shows the definite parameters used to solve the model (27 companies 

active in the stock exchange). 
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Table 1. The definitive parameters used in problem-solving 

Parameter Value Parameter Value 

Number of authorized shares per 

Portfolio 

5 Purchase fee 0.005 

The maximum weight of the share 0.5 Sales fee 0.006 

The minimum weight of the share 0.1 Initial investment 1000 

According to table 1, the maximum objective function in the above 

problem is 1520.056.  

Sensitivity analysis 

• Number of authorized shares per portfolio  

Initially, the sensitivity of the problem is analyzed on the difference between 

minimum and maximum number of authorized stocks in each portfolio. Thus, 

the objective function and the computational time are shown in Table 3. 

Table 2. Changes in the amount of objective function and computational time by changing the 

difference between upper and lower number of authorized stocks 

Number of 

diffrence between 

upper and lower 

The value of the 

objective function 

Computational 

time 

The number of companies that 

have been purchased at least 

once during six periods 

3 2.23 5.003 15 

4 2.54 5.191 19 

5 2.833 7.215 22 

6 3.024 7.961 23 

7 3.198 7.053 23 

For simplicity, Figures 1 and 2 show the change in the objective function 

and the number of companies involved in stock purchases, with changes in the 

number of authorized shares per portfolio 
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Figure 1. Change the objective function value by changing the difference between upper and 
lower number of authorized stocks  

Figure 2. Chart of total companies by changing the difference between upper and lower 

number of authorized stocks 
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• Risk-free rate of return 

In the remainder of this section, with the assumption of constant consideration 

of 5 shares in each portfolio of purchases in each time period, the objective 

function and the computational time of the problem solving are calculated by 

changing the risk-free rate of return. Table 3 shows the changes in these 

indicators in different amounts of the risk-free rate of return. 

Table 3. Change the value of the objective function and computational time by changing the 
risk- free rate of return 

Return of 

risk-free 

deposit 

The value of the 

objective function 
Computational time 

Amount of change in the 

value of the objective 

function (%) 

0.11 2.527 6.915 -0.00237 

0.12 2.530 7.677 -0.00119 

0.13 2.533 7.215 0.00000 

0.14 2.537 7.024 0.00158 

0.15 2.540 7.168 0.00276 

0.16 2.543 10.292 0.00393 

According to the results of the above table, with the increase of risk-free 

rate of return, the objective function is increased and with the increase of 1% of 

the risk-free rate of return, the total objective function is linearly increased. For 

this purpose, Figure 3 illustrates this change in risk-free returns. 
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Figure 3. Change in the percentage of total profit by changing the risk-free rate of return 

• Uncertainty rates 

Due to the nature of possibilistic Robust optimization model, the uncertainty 

rate is implemented as a decision variable in modeling, which is included in the 

objective function and computational time calculated in β and α between 0.5 
and 1. This section is shown in Table 4 by changing the uncertainty rate. 

Table 4. Change the value of the objective function and computational time by changing the 
uncertainty rate 

    
The value of the objective 

function 
Computational time 

0.9 

 

0.5 0.850 6.173 

0.6 0.852 5.374 

0.7 0.854 5.844 

0.8 0.856 5.125 

0.9 0.858 5.721 

1 0.860 6.337 

0.95 

 

0.5 1.553 3.985 

0.6 1.552 4.146 

0.7 1.550 4.879 

0.8 1.549 4.457 

0.9 1.548 4.15 

1 1.547 4.436 

1 

 

0.5 2.533 7.215 

0.6 2.528 8.552 

0.7 2.523 6.113 

0.8 2.518 6.555 

0.9 2.513 6.148 

1 2.508 7.421 
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According to the results of Table 4, the maximum profit earned in the 

uncertainty rate α and β is 1 and 0.5, respectively. Figure 4 shows the trend of 
variations in the objective function value at different rates of uncertainty. 

 

Figure 4. Change the value of the objective function with changes in uncertainty rate 

Conclusion and suggestions 

In today's competitive atmosphere, it's important and essential to design a 

robust model for stock portfolio selection. Over the past decades, sudden 

Volatilities and the issue of coping with their adverse effects on the stock 

market have become a major challenge for financial managers of organizations 

or investors. Due to the uncertain nature of input parameters in the stock 

market, in this paper, we have developed a new robust possibilistic 

programming model based on the Sharpe ratio to deal with the uncertainty of 

the parameters and the low quality of the decisions made by this factor. In the 

following, a real problem based on the fuzzy data of 27 companies active in the 

stock market have been presented to show the performance of the proposed 

model, as well as the high-performance and functionality of the robust 

possibilistic programming model. Finally, it's worth noting that according to 

the outputs of the model, determining the exact amount of fines (penalty) in the 

possibilistic programming model is very important because fines are the main 

factor in the performance of the model and the determination of the confidence 

levels of non-deterministic parameters. 
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Other robust optimization approaches can also be used in future research. 

One can also use the opinions of various experts to increase the credibility of 

describing the sensitive parameters.  

In the end, it is suggested to use risk-based minimization models, in 

particular, using more precise and comprehensive risk assessment measures 

such as the Estimator of Garman- Klass (garman,1980) and Parkinson's 

(Parkinson,1980), in order to take full advantage of Robust possibilistic 

programming capabilities. Additionally, adding an integer constraint to the 

weight of each asset/share in the investment portfolio helps the proposed 

portfolio of the model in the real world to be easily implemented and prevent 

the purchase of a very small shareholding (micro trade). 
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