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ABSTRACT 

In this paper, first a short history of the notion of equilibrium problem in Econom-
ics and Nash game theory is stated. Also the relationship between equilibrium 
problem and important mathematical problems like optimization problem, nonlin-
ear programming, variational inequality problem, fixed point problem and com-
plementarity problem are given. The concept of generalized pseudomonotonicity 
for vector valued bifunctions is introduced and by using it some existence results 
for the vector equilibrium problem, in the setting of topological vector spaces, are 
presented. Some examples in order to illustrate the main results and compare them 
with the corresponding published results are furnished. Further, the compactness 
of the solution set of vector equilibrium problem is investigated. 

  

1 Introduction 

        In economics, economic equilibrium is a state where economic forces such as supply and de-
mand are balanced and in the absence of external influences the (equilibrium) values of economic 
variables will not change. For example, in the standard textbook model of perfect competition, equi-
librium occurs at the point at which quantity demanded and quantity supplied is equal. Market equi-
librium [20, 7] in this case refers to a condition where a market price is established through competi-
tion such that the amount of goods or services sought by buyers is equal to the amount of goods or 
services produced by sellers. This price is often called the competitive price or market clearing price 
and will tend not to change unless demand or supply changes, and the quantity is called "competitive 
quantity" or market clearing quantity. However, the concept of equilibrium in economics also applies 
to imperfectly competitive markets, where it takes the form of a Nash equilibrium. 
 

1.1 Properties of Equilibrium  
 

    Three basic properties of equilibrium in general have been proposed by Dixon (see, Chapter13 of 
[6]) as follows: 
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Equilibrium property 𝑃ଵ: The behaviour of agents is consistent. 
Equilibrium property 𝑃ଶ: No agent has an incentive to change its behaviour. 
Equilibrium Property 𝑃ଷ: Equilibrium is the outcome of some dynamic process (stability). 
 

1.2 Example: Competitive Equilibrium 
 
    In a competitive equilibrium, supply equals demand. Property 𝑃ଵ is satisfied ,because at the equilib-
rium price the amount supplied is equal to the amount demanded. Property 𝑃ଶ is also satisfied. De-
mand is chosen to maximize utility given the market price: no one on the demand side has any incen-
tive to demand more or less at the prevailing price. Likewise supply is determined by firms maximiz-
ing their profits at the market price: no firm will want to supply any more or less at the equilibrium 
price. Hence, agents on neither the demand side nor the supply side will have any incentive to alter 
their actions. To see whether Property 𝑃ଷ is satisfied, consider what happens when the price is above 
the equilibrium. In this case there is an excess supply, with the quantity supplied exceeding that de-
manded. This will tend to put downward pressure on the price to make it return to equilibrium. Like-
wise where the price is below the equilibrium point there is a shortage in supply leading to an increase 
in prices back to equilibrium. Not all equilibria are "stable" in the sense of Equilibrium property 𝑃ଷ It 
is possible to have competitive equilibria that are unstable. However, if an equilibrium is unstable, it 
raises the question of how you might get there. Even if it satisfies properties 𝑃ଵ and 𝑃ଶ, the absence of 
𝑃ଷmeans that the market can only be in the unstable equilibrium if it starts off there. In most simple 
microeconomic stories of supply and demand a static equilibrium is observed in a market; however, 
economic equilibrium can be also dynamic. Equilibrium may also be economy-wide or general, as 
opposed to the partial equilibrium of a single market. Equilibrium can change if there is a change in 
demand or supply conditions. For example, an increase in supply will disrupt the equilibrium, leading 
to lower prices. Eventually, a new equilibrium will be attained in most markets. Then, there will be no 
change in price or the amount of output bought and sold until there is an exogenous shift in supply or 
demand (such as changes in technology or tastes). That is, there are no endogenous forces leading to 
the price or the quantity. 
 

1.3 Example: Nash Equilibrium 
 
    The Nash equilibrium is widely used in economics as the main alternative to competitive equilibri-
um. It is used whenever there is a strategic element to the behaviour of agents and the "price taking" 
assumption of competitive equilibrium is inappropriate. The first use of the Nash equilibrium was in 
the Cournot duopoly as developed by Cournot in his book [5]. Both firms produce a homogenous 
product: given the total amount supplied by the two firms, the (single) industry price is determined 
using the demand curve. This determines the revenues of each firm (the industry price times the quan-
tity supplied by the firm). The profit of each firm is then this revenue minus the cost of producing the 
output. Clearly, there is a strategic interdependence between the two firms. If one firm varies its out-
put, this will in turn affect the market price and so the revenue and profits of the other firm. We can 
define the payoff function which gives the profit of each firm as a function of the two outputs chosen 
by the firms. Cournot [5] assumed that each firm chooses its own output to maximize its profits given 
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the output of the other firm. The Nash equilibrium occurs when both firms are producing the outputs 
which maximize their own profit given the output of the other firm. In terms of the equilibrium prop-
erties, we can see that 𝑃ଶ is satisfied: in a Nash equilibrium, neither firm has an incentive to deviate 
from the Nash equilibrium given the output of the other firm. 𝑃ଵ is satisfied since the payoff function 
ensures that the market price is consistent with the outputs supplied and that each firms profits equal 
revenue minus cost at this output. 
 

1.4 Dynamic Equilibrium 
 

    Whereas in a static equilibrium all quantities have unchanging values, in a dynamic equilibrium 
various quantities may all be growing at the same rate, leaving their ratios unchanging. For example, 
in the neoclassical growth model, the working population is growing at a rate which is exogenous 
(determined outside the model, by non-economic forces). In dynamic equilibrium, output and the 
physical capital stock also grow at that same rate, with output per worker and the capital stock per 
worker unchanging. Similarly, in models of inflation a dynamic equilibrium would involve the price 
level, the nominal money supply, nominal wage rates, and all other nominal values growing at a sin-
gle common rate, while all real values are unchanging, as is the inflation rate [13,17,19]. The process 
of comparing two dynamic equilibria to each other is known as comparative dynamics. For example, 
in the neoclassical growth model, starting from one dynamic equilibrium based in part on one particu-
lar saving rate, a permanent increase in the saving rate leads to a new dynamic equilibrium in which 
there are permanently higher capital per worker and productivity per worker, but an unchanged 
growth rate of output; so it is said that in this model the comparative dynamic effect of the saving rate 
on capital per worker is positive but the comparative dynamic effect of the saving rate on the output 
growth rate is zero. Equilibrium problems of theoretical aspect and its applications in Economics, 
optimization, Fixed point and so on ( see, for instance, [4]) recently attracts increasing attention and 
are proven to be significant in the study of optimization, variational inequalities and complementarity 
problems. The formulation of such problems follows. Given a set 𝐾 and a bifunction 𝐹 ∶ 𝐾 × 𝐾 →

ℝ . An (scalar) equilibrium problem (EP) consists of finding 𝑥 𝜖 𝐾 such that 
 

𝐹(𝑥, 𝑦) ≥ 0, ∀𝑦𝜖 𝐾 . 
 

    Many problems of practical interests involve an equilibrium problem formulation in their descrip-
tion, see for example [2, 4]. Most results on the existence of solutions for equilibrium problems are 
guaranteed by special algebraic properties on the bifunction 𝐹, known as generalized monotonicity, 
see e.g. [4, 11]. Economists use the term equilibrium to describe the balance between supply and de-
mand in the marketplace. Under ideal market conditions, price tends to settle within a stable range 
when output satisfies customer demand for that good or service. Equilibrium is vulnerable to both 
internal and external influences. The appearance of a new product that disrupts the marketplace, such 
as the iPhone, is one example of an internal influence. The collapse of the real estate market as part of 
the Great Recession is an example of an external influence. The motivation of introducing equilibrium 
problem and existence theorems was in order to describe them by applying mathematical models and 
methods. In this article we deal with the vector equilibrium problem and present some existence theo-
rems by using a new definition of generalized psudomonotonicity. The equilibrium price and quantity 
in a market are located at the intersection of the market supply curve and the market demand curve.    
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Often, economists must churn through massive amounts of data to solve equilibrium equations. This 
step-by-step guide will walk you through the basics of solving such problems. Throughout this paper, 
let 𝑌be a (Hausdorff) topological vector space and 𝐶 denote  a closed and convex cone of 𝑌. The set 𝐶 
is pointed if 𝐶 ∩ (−𝐶) = 0 . Also it is called a solid cone when 𝑖𝑛𝑡𝐶 ≠  ∅, where 𝑖𝑛𝑡𝐶 stands for the 
topological interior of 𝐶. The convex cone 𝐶 induces a preorder on 𝑌 as follows: 

𝑦ଵ ⪯  𝑦ଶ ⇔ 𝑦ଶ − 𝑦ଵ𝜖 𝐶 . 
Notation: 𝑦ଵ ⪵ 𝑦ଶ ⇔ 𝑦ଶ − 𝑦ଵ𝜖 𝐶 ∖ {0}. 
In addition, if 𝐶 is a pointed cone then the binary relation ⪯ is a partial ordering. Likewise, we write 
𝑦ଵ ≺ 𝑦ଶ if 𝑦ଶ − 𝑦ଵ𝜖 𝑖𝑛𝑡𝐶. 
Let 𝑋 be a topological vector space and let 𝐾 ⊂  𝑋 be nonempty and closed convex set. The vector 
equilibrium problem (for short, (VEP)) for the bifunction 𝑓 ∶  𝐾 × 𝐾 → 𝑌 is to find �̅�𝜖𝐾, such that 
𝑓(�̅�, 𝑦) ⊀ 0, ∀𝑦𝜖 𝐾, 
with 𝑓(𝑥, 𝑥) = 0, ∀𝑥𝜖 𝐾. 

(1) 

                                                                 

2 Preliminaries 
 

    Throughout the paper, unless otherwise specified, 𝐾 is a nonempty closed convex subset of a topo-
logical vector space 𝑋 and (𝑌 ; 𝐶) is an ordered topological vector space induced by the pointed 
closed convex cone C with 𝑖𝑛𝑡𝐶 nonempty and 𝐶∗ = {𝑦∗𝜖𝑌∗ ∶  ⟨𝑦∗, 𝑥⟩ ≥ 0, ∀𝑥𝜖𝐶} ≠ ∅.   The follow-
ing definition and lemma will be useful in article. Note that from the bipolar theorem (see [18]) we 
have 
𝑦𝜖𝐶 ⇔ [〈𝑦∗, 𝑦〉 ≥ 0, ∀𝑦∗𝜖𝐶∗], (2) 

𝑦𝜖𝑖𝑛𝑡𝐶 ⇔ ൣ〈𝑦∗, 𝑦〉 > 0, ∀𝑦∗𝜖 𝐶ା
∗ = ൛𝑦∗𝜖𝑌∗: 〈𝑦∗, 𝑦〉 > 0, ∀𝑥 ∈ 𝐶\{0}ൟ൧. (3) 

 

Definition 2.1.([18]) The mapping  𝑔 ∶  𝐾 → 𝑌 is called 𝐶 −convex if for every 𝑥, 𝑥ˊ ∈ 𝐾 and 𝑡 ∈

[0,1] one has 𝑡𝑔(𝑥) + (1 − 𝑡)𝑔൫𝑥ˊ൯ − 𝑔൫𝑡𝑥 + (1 − 𝑡)𝑥ˊ൯ ∈ 𝐶. 

Definition 2.2.([18]) Let 𝑋 be a topological space. The function 𝑓 ∶  𝑋 → ℝ is lower semicontinuous 
at 𝑥଴ if 

𝑓(𝑥଴) ≤ lim
ఈ

𝑖𝑛𝑓𝑓(𝑥ఈ). 

for any net {𝑥ఈ} ⊂ 𝑋 such that 𝑥ఈ → 𝑥଴ . Similarly, f is upper semicontinuous if and only if −𝑓 is 
lower semicontinuous. 
 In the following we recall the definition of 𝐶–lower and 𝐶 −upper semicontinuous for vector valued 
mappings. 
Definition 2.3.([18]) Let 𝑋 be a topological space and 𝑌 a topological vector space with 𝐶 ⊂ 𝑌 a solid 
convex cone. The vector valued mapping 𝑔 ∶  𝑋 →  𝑌 is called 
(a) 𝐶 −lower semicontinuous on 𝑋 if for each fixed 𝑥𝜖 𝑋 and for any 𝑦 ∈ 𝑖𝑛𝑡𝐶 , there exists a neigh-

bourhood 𝑈(𝑥) such that 
𝑔(𝑥) 𝜖 𝑔(𝑢) + 𝑦 − 𝑖𝑛𝑡𝐶,   ∀𝑢 ∈ 𝑈(𝑥). 

(b) 𝐶 −upper semicontinuous on 𝑋 if and only if for each 𝑥 ∈ 𝑋 and for any 𝑦 ∈ 𝑖𝑛𝑡𝐶, there exists a 
neighbourhood 𝑈(𝑥) such that 

𝑔(𝑢) ∈ 𝑔(𝑥) + 𝑦 − 𝑖𝑛𝑡𝐶, ∀𝑢 ∈ 𝑈(𝑥). 
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We need the following lemma in the next section. 
Lemma 2.1. If 𝑔 ∶  𝐾 → 𝑌 is a 𝐶 −lower semicontinuous mapping, then the set  
𝐴 ≔ {𝑥 ∈ 𝐾, 𝑔(𝑥) ∉ 𝑖𝑛𝑡𝐶} is a closed set in 𝐾. 
Proof. Suppose that 𝑥 ∉ 𝐴. Then 𝑔(𝑥) ∈  𝑖𝑛𝑡𝐶. Hence by Definition 2.3 (a) there exists U(x) such that 

𝑔(𝑥) ∈ 𝑔(𝑢) + 𝑔(𝑥) − 𝑖𝑛𝑡𝐶, ∀𝑢 ∈ 𝑈(𝑥), 
which implies that 𝑔(𝑢) ∈ 𝑖𝑛𝑡𝐶. Therefore 𝑈(𝑥) ⊂ 𝐾\𝐴. This shows that 𝐴 is closed in 𝐾.∎ 
 
Definition 2.4.([3]) A mapping 𝑓 ∶  𝐾 × 𝐾 → 𝑌 is said to be generalized pseudomonotone if there 
exists function 𝛼: 𝑋 × 𝑋 → 𝑌 with 

lim
௧→଴

𝛼(𝑡𝑦 + (1 − 𝑡)𝑥, 𝑥)

𝑡
⪯ 0, 

such that the following implication holds: 
 
𝑓(𝑥, 𝑦) ⊀ 0 ⇒ 𝑓(𝑦, 𝑥) ⪯ 𝛼(𝑦, 𝑥), ∀𝑥, 𝑦𝜖𝐾. (4) 
                   
Remark 2.1. (i) Note that if in Definition 2.4 we take 𝛼(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑋 then the general-
ized pseudomonotone reduces to the 𝐶 −pseudomonotonicity given in [10]. 
(ii) Also if 𝑓 is generalized pseudomonotonicity with 𝛼(𝑥, 𝑦)  ⪯  0; for all 𝑥, 𝑦 ∈ 𝑋 then 𝑓 is 
𝐶 −pseudomonotone. Indeed if 𝑓(𝑥, 𝑦) ⪰ 0 then 𝑓(𝑥, 𝑦) ∈ 𝐶 and so 𝑓(𝑥, 𝑦) ⊀ 0 (note C is a pointed 
cone). Now the assertion follows from the generalized pseudomonotonicity with 𝛼(𝑥, 𝑦) ⪯ 0,for all 
𝑥, 𝑦 ∈ 𝑋. 
(iii) Definition 3.4 of [16] is a special case of Definition 2.4. 
Definition 2.5. ([15])The mapping 𝑓 ∶  𝑋 ×  𝑋 →  𝑌 is said to be weakly generalized pseudomono-
tone, if there exists a function 𝛼: 𝑋 → 𝑌 with 𝛼(𝑡𝑥) = 𝑘(𝑡)𝛼(𝑥) for all 𝑡 > 0 and 𝑥 ∈ 𝑋, where 𝑘 is 

function from (0, +∞) to (0, +∞) with lim
௧→଴

௞(௧)

௧
= 0 such that for every pair of points 𝑥, 𝑦 ∈ 𝐾, we 

have 
𝑓(𝑥, 𝑦) ⊀ 0 ⇒ 𝑓(𝑥, 𝑦) ⪯ 𝛼(𝑦 − 𝑥) (5) 
                                                                                                      
Example 2.1. Let 𝑋 = 𝑌 = ℝ , 𝐾 = [0,1] , 𝐶 = [0, +∞], and 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦. Then it is easy to veri-
fy that 𝑓 is weakly generalized pseudomonotone mapping with 𝛼(𝑥) = 𝑥ଶ ∀𝑥 ∈ 𝑋. 
Remark that if 𝑓 is weakly generalized pseudomonotone then it is generalized pseudomonotone. Be-
cause we can take 𝛼ଵ(𝑥, 𝑦) =  𝛼(𝑥 − 𝑦), for all 𝑥, 𝑦 ∈ 𝑋. Then 

lim
௧→଴

𝛼ଵ(𝑥 + 𝑡(𝑦 − 𝑥), 𝑥)

𝑡
= lim

௧→଴

𝑘(𝑡)𝛼(𝑦 − 𝑥)

𝑡
= 0. 

Now the proof of the assertion follows from the relation (5). 
Consequently, we have the following facts: 
𝐶 −pseudomonotonicity ⇒ weakly generalized pseudomonotonicity ⇒ generalized pseudomonotonic-
ity. 
The following example shows that there are generalized pseudomonotone mappings which are not 
𝐶 −pseudomonotone. 
Example 2.2. Let  𝑋 =  ℝ , 𝐾 is any nonempty closed convex subset of ℝ , 𝑌 = ℝଶ, 
          𝐶 = {(𝑥, 𝑦), 𝑥 ≥ 0, 𝑦 ≥ 0}, and 
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𝑓(𝑥, 𝑦) = ((𝑥 − 𝑦)ଶ, (𝑥 − 𝑦)ଶ). 
Then 𝑓 is generalized pseudomonotone mapping with 

𝛼(𝑥, 𝑦) = (2(𝑥 − 𝑦)ଶ, 2(𝑥 − 𝑦)ଶ) , ∀𝑥, 𝑦 ∈ 𝑋. 
It is easy to see that 𝑓 is not 𝐶 −pseudomonotone. 
Definition 2.6.([8]) Let 𝐾 be a convex subset of a topological vector space 𝐸. A real valued mapping 
𝑓 ∶  𝐾 → ℝ is called hemicontinuous if, for all 𝑥, 𝑦 𝜖 𝐾 the mapping 𝐹: [0,1] → 𝑋 defined by 𝐹(𝑡) =

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) is continuous at 0 from the right(that is 𝐹(0) = lim
௧→଴శ

𝐹(𝑡)). 

Definition 2.7. ([8]) Let 𝐾 be a nonempty subset of a topological vector space 𝐸. A mapping 𝐹: 𝐾 →

2ா is said to be a KKM mapping, if for any finite subset {𝑥ଵ, 𝑥ଶ, … , 𝑥௡} ⊂  𝐾; the following inclusion 
holds: 

𝑐𝑜{𝑥ଵ, 𝑥ଶ, … , 𝑥௡} ⊂ ራ 𝐹(𝑥௜

௡

௜ୀଵ
). 

The following results play crucial roles in the next section. 
Lemma 2.2. ([8]) Let 𝐾 be a nonempty subset of a Hausdorff topological vector space 𝐸 and let 𝑓 ∶

 𝐾 → 2ா be a KKM mapping. If 𝑓(𝑦) is closed in 𝐸 for all 𝑦 ∈ 𝐸 and compact for some 𝑦 ∈ 𝐾 then 

⋂ 𝑓(𝑦) ≠ ∅.௬∈௄  

Proposition 2.3. ([14]) Let 𝑓 be a single-valued mapping from 𝑋 into 𝑌 and 𝑢∗ ∈ 𝐶ା
∗ . Let ∅: 𝑋 → ℝ be 

a mapping defined by ∅(𝑥) = 〈𝑢∗, 𝑔(𝑥)〉 for all 𝑥 ∈ 𝑋.Then the following assertions are valid: 
If 𝑓 is 𝐶 −lower semicontinuous (rep., 𝐶 −upper semicontinuous) then ϕ is u.s.c:(resp., l.s.c). 
 

3 Main Results 
 

  In this section we give some existence results of a solution for the VEP by applying generalized 
pseudomonotonicity. Moreover, under suitable assumptions the compactness of the solution set of 
VEP is investigated. The results of this part improve and generalize the corresponding results ap-
peared in [1, 3, 9, 10, 15, 16]. 
Theorem 3.1. Let 𝐾 be a nonempty closed convex subset of a topological vector space 𝑋 and 𝐶 be a 
solid pointed closed convex cone of a topological vector space 𝑌.Suppose 𝑓 ∶  𝐾 × 𝐾 → 𝑌 is 
hemicontinuous in the first argument and generalized pseudomonotone. Let the following condition 
hold: 

(a) For each 𝑧 ∈ 𝐾,the mapping 𝑥 ↦ 𝑓(𝑧, 𝑥) is 𝐶 −convex. 
Then �̅� ∈ 𝐾 is a solution of VEP if and only if 
 
𝑓(𝑦, �̅�) ⪯ 𝛼(𝑦, �̅�), ∀𝑦 ∈ 𝐾. (6) 

                                                                                                               
Proof. Assume that �̅� ∈ 𝐾 is a solution of V EP (1) , i.e., f( 𝑥ഥ , 𝑦) ⊀ 0 , ∀𝑦 ∈ 𝐾 Since 𝑓 is generalized 
pseudomonotone, we have 

𝑓(𝑦, �̅�), ∀𝑦 ∈ 𝐾, 
and so  𝑥ഥ  is a solution of (6). 
Conversely, suppose there exists an �̅� ∈ 𝐾 satisfying (6) Choose any point 𝑦 ∈ 𝐾 and consider 𝑥௧ =

𝑡𝑦 + (1 − 𝑡)�̅� , 𝑡 ∈ [0,1]. We have 
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𝑓(𝑥௧ , �̅�) ⪯ 𝛼(𝑥௧ , �̅�). (7) 

                                                                                                                         
Now condition (a) implies, 

0 ⪯ 𝑓(𝑥௧ , 𝑥௧) ⪯ 𝑡𝑓(𝑥௧ , 𝑦) + (1 − 𝑡)𝑓(𝑥௧ , �̅�), 
which implies that 
𝑡[𝑓(𝑥௧ , �̅�) − 𝑓(𝑥௧ , 𝑦)] ⪯ 𝑓(𝑥௧ , �̅�). (8) 
 
From (7) and (8), we get 

𝑓(𝑥௧ , �̅�) − 𝑓(𝑥௧ , 𝑦) ⪯
𝛼(𝑥௧ , 𝑦)

𝑡
, ∀𝑦 ∈ 𝐾. 

Hence it follows from the hemicontinuity of 𝑓 in the first argument, 𝐶 is closed, and the property of 𝛼 
by taking 𝑡 → 0, we get 𝑓(�̅�, 𝑦) ⪰ 0, which implies that 𝑓(�̅�, 𝑦) ⊀ 0 ∀𝑦 ∈ 𝐾 (note 𝐶 is pointed). Then 
 𝑥ഥ  is a solution of VEP. This completes the proof.∎ 
Note that if in Theorem 3.1 we take 𝑌 =  ℝ and 𝛼 = 0 then Theorem 3.1 collapses to Lemma 2.4 of 
[12]. Further Theorem 3.1 is a vector version of Lemma 2.1 of [11] and Lemma 2.4 of [12]. 
Theorem 3.2. Let 𝐾 be a nonempty closed convex subset of a topological vector space 𝑋 and 𝐶 be a 
solid pointed closed convex cone of a topological vector space  𝑌. Let  𝑓 ∶  𝐾 ×  𝐾 → 𝑌 be hemicon-
tinuous in the first argument and generalized pseudomonotone. Assume that the following conditions 
hold: 

(i) for each 𝑧 ∈ 𝐾; the mapping 𝑥 ↦ 𝑓(𝑧, 𝑥) is 𝐶 −convex and 𝐶 −lower semicontinuous; 
(ii) ∃𝑦଴ ∈ 𝐾 such that {𝑥 ∈ 𝐾; 𝑓(𝑦଴, 𝑥) ≤ 𝛼(𝑦଴, 𝑥)} is compact; 
(iii) for each 𝑧 ∈ 𝐾, the mapping 𝑥 ↦ 𝛼(𝑧, 𝑥) is 𝐶 −upper semicontinuous. 

Then the solution set of VEP is nonempty and compact. 
Proof. Consider the set valued mappings  𝐹: 𝐾 → 2௑ and  𝐺: 𝐾 → 2௒ such that 

𝐹(𝑦) = {𝑥 ∈ 𝐾: 𝑓(𝑥, 𝑦) ⊀ 0} , ∀𝑦 ∈ 𝐾 , 
and 

𝐺(𝑦) = {𝑥 ∈ 𝐾 ∶ 𝑓(𝑦, 𝑥) ⪯ 𝛼(𝑦, 𝑥)}, ∀𝑦 ∈ 𝐾 . 
Now �̅� solves VEP if and only if �̅� ∈ ⋂ 𝐹(𝑦)௬∈௄ . Thus it suffices to prove ⋂ 𝐹(𝑦)௬∈௄  ≠ ∅. First we 

claim that F is a KKM mapping. Otherwise there exists {𝑥ଵ , 𝑥ଶ, … , 𝑥௠} ⊂ 𝐾 such that 
{𝑥ଵ , 𝑥ଶ, … , 𝑥௠} ⊈ ⋃ 𝐹(𝑥௜).௠

௜ୀଵ  Hence there exists 𝑥଴ ∈ 𝑐𝑜{𝑥ଵ, 𝑥ଶ, … , 𝑥௠}, 𝑥଴ = ∑ 𝑡௜𝑥௜
௠
௜ୀଵ  where 𝑡௜ ≥ 0 

, 𝑖 = 1,2, … , 𝑚, ∑ 𝑡௜ = 1,௠
௜ୀଵ  but 𝑥଴ ∉ ⋃ 𝐹(𝑥௜).௠

௜ୀଵ   Then 𝑓(𝑥଴, 𝑥௜) ≺ 0;  for 𝑖 = 1,2, … , 𝑚. From (i) ,it 
follows that 

0 ⪯ 𝑓(𝑥଴, 𝑥଴) ⪯ ෍ 𝑡௜𝑓(𝑥଴, 𝑥௜) ≺ 0,

௠

௜ୀଵ

 

which is a contradiction and so 𝐹 is a KKM mapping. The generalized pseudomonotonicity of 𝑓, im-
plies that 𝐹(𝑦)  ⊂  𝐺(𝑦), ∀𝑦 ∈ 𝐾.Therefore 𝐺 is also a KKM mapping. We prove that G(y) is a closed 
set for all 𝑦 ∈  𝐾. Suppose that 𝑥ఈ𝜖 𝐺(𝑦) be a net 𝑥ఈ → 𝑥. Then 

𝑓(𝑦, 𝑥ఈ) ⪯ 𝛼(𝑦, 𝑥ఈ). 
Now suppose that 𝑢∗ ∈ 𝐶∗ be an arbitrary element of 𝐶∗. Hence it follows from Proposition 2.3 that 
 
〈𝑢∗, 𝑓(𝑦, 𝑥)〉 ≤ lim

ఈ
𝑖𝑛𝑓 〈𝑢∗, 𝑓(𝑦, 𝑥ఈ)〉 ≤ lim

ఈ
𝑠𝑢𝑝 〈𝑢∗, 𝛼(𝑦, 𝑥ఈ)〉 ≤ 〈𝑢∗, 𝛼(𝑦, 𝑥)〉 (9) 
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then by (2) we have 𝛼(𝑦, 𝑥) − 𝑓(𝑦, 𝑥) ∈ 𝐶.This means  𝑓(𝑦, 𝑥) ⪯ 𝛼(𝑦, 𝑥). Consequently, 𝑥 ∈  𝐺(𝑦) 
and so 𝐺(𝑦) is a closed set. Then 𝐺 satisfies all the assumptions of Lemma 2.2, note 𝐺(𝑦଴) is com-
pact, and so ⋂ 𝐺(𝑦) ≠ ∅ .  ௬∈௄ On the other hand Theorem 3.1 implies  

ሩ 𝐹(𝑦) = ሩ 𝐺(𝑦).

௬∈௄௬∈௄

 

So there exists 𝑥 ഥ ∈  𝐾 such that 𝑓( 𝑥ഥ , 𝑦) ⊀  0, ∀𝑦 ∈  𝐾, i.e VEP (1) has a solution. 
Also since ⋂ 𝐹(𝑦) ௬∈௄ is a closed set and ⋂ 𝐹(𝑦) ⊂ 𝐺(𝑦଴)௬∈௄  then the solution set of 

VEP is a compact set.∎ 
Theorem 3.3. Let 𝐾 be a nonempty subset of a topological vector space 𝑋 and (𝑌, 𝐶) is an ordered 
topological vector space induced by the pointed closed convex cone 𝐶 with 𝑖𝑛𝑡𝐶 ≠  ∅. Suppose 𝑓 ∶

 𝐾 ×  𝐾 → 𝑌 be hemicontinuous in the first argument and generalized pseudomonotone. Let the fol-
lowing conditions hold: 

(i) 𝑓(. , 𝑦) is 𝐶 −lower semicontinuous, for all 𝑦 ∈ 𝐾, 
(ii) there exist a compact convex subset 𝐵 of 𝐾 such that 

∀𝑥 ∈ 𝐾\𝐵, ∃𝑧 ∈ 𝐵 such that 𝑓(𝑧, 𝑥) ≻ 𝛼(𝑧, 𝑥). 
Then the solution set of (VEP) is nonempty and compact. 
Proof. Consider the set valued mappings 𝐹 ∶  𝐾 → 2௑, and 𝐺: 𝐾 → 2௑ such that 

𝐹(𝑦) = {𝑥 ∈ 𝐾: 𝑓(𝑥, 𝑦) ⊀ 0}, ∀𝑦 ∈ 𝐾, 
and 
 

𝐺(𝑦) = {𝑥 ∈ 𝐾: 𝑓(𝑦, 𝑥) ⪯ 𝛼(𝑦, 𝑥)}, ∀𝑦 ∈ 𝐾. 
Now �̅� solves (VEP) if and only if �̅� ∈ ⋂ 𝐹(𝑦) ௬∈௄ . We note that for each 𝑦 ∈ 𝐾 the set 

𝐹(𝑦) = {𝑥 ∈ 𝐾, 𝑓(𝑥, 𝑦) ∉ −𝑖𝑛𝑡𝐶}, 
is a closed set, see Lemma 2.1. Now it follows from a similar method as given for the proof of Theo-
rem 3.2 that VEP has a solution. We claim that 

ሩ 𝐹(𝑦)
௬∈௄

⊂ 𝐵. 

Otherwise, there exists 

𝑥 ∈ ቆሩ 𝐹(𝑦)
௬∈௄

ቇ \𝐵. 

Then by (ii) of the hypothesis there exists 𝑧 ∈  𝐾 such that 
𝑓(𝑧, 𝑥଴) ≻ 𝛼(𝑧, 𝑥), 

and so it follows from the generalized pseudomonotonocity of  𝑓 that 𝑓(𝑥;  𝑧)  ≺  0, which is contra-
dicted by 𝑥 ∈ ⋂ 𝐹(𝑦)௬∈௄  This completes the proof.∎ 

 

4 Conclusions 
 

In this paper, a short history of the notion of equilibrium problem in Economics and Nash game theo-
ry was stated and the relationship between equilibrium problem and important mathematical problems 
were given. Some examples in order to illustrate the main results and compare them with the corre-
sponding published results were presented.  
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