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Abstract 

This paper investigates the nature of volatility characteristics of stock 

returns in the Bangladesh stock markets employing daily all share price 

index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock 

Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 

January 2004 to 20 August 2015 respectively.  Furthermore, the study 

explores the adequate volatility model for the stock markets in 

Bangladesh. Results of the estimated MA(1)-GARCH(1,1) model for 

DSE and GARCH(1,1) model for CSE reveal that the stock markets of 

Bangladesh capture volatility clustering, while volatility is moderately 

persistent in DSE and highly persistent in CSE. Estimated MA(1)-

EGARCH(1,1) model shows that effect of bad news on stock market 

volatility is greater than effect induced by good news in DSE, while 

EGARCH(1,1) model displays  that volatility spill over mechanism is not 

asymmetric in CSE. Therefore, it is concluded that return series of DSE 

show evidence of three common events, namely volatility clustering, 

leptokurtosis and the leverage effect, while return series of CSE contains 

leptokurtosis, volatility clustering and long memory. Finally, this study 

explores that MA(1)-GARCH(1,1) is the best model for modeling 

volatility of Dhaka stock market returns, while GARCH models are 

inadequate for volatility modeling of CSE returns. 
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1.  Introduction 

Volatility is the most influential element in asset pricing and portfolio 

management. Univariate volatility modeling has been one of the most 

active areas of research in empirical finance and time series econometrics 

from the inventions of Engel’s (1982) autoregressive conditional 
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heteroskedasticity (ARCH) model and Bollerslev’s (1986) GARCH 

model. 

 Financial time series data exhibit common characteristics which are 

frequently mentioned as the ‘stylized facts’. The common empirical 

statement is that financial market volatility is time varying and persistent, 

shows clustering, responds asymmetrically to shocks, and is different 

across assets, asset classes and countries (Bollerslev et al., 1986). More 

specifically, financial time series data show evidence of three common 

events, namely volatility clustering, leptokurtosis and the leverage effect. 

 Volatility clustering implies that a period of low volatility run after 

periods of low volatility. In financial time series, one often observes that 

big shocks tend to be followed by big shocks in either direction, and small 

shocks tend to follow small shocks. Leptokurtosis means that the 

distributions of financial data follow non-normal distribution. Leverage 

effect or asymmetric volatility implies that volatility rises when stock 

prices go down and decreases when stock prices go up, i.e., the 

consequence of bad news on stock market volatility is greater than the 

consequence tempted by good news (Alshogeathri, 2011). There have 

been a large number of empirical applications of modeling volatility found 

on both developed and developing stock markets, see for example 

Mougoué and Whyte (1996), Engle and Patton (2001), Ogum et al. (2005), 

Charles and Darné (2014). Besides, Mecagni and Sourial (1999) explore 

that the stock returns of the Egyptian stock market exhibit volatility 

clustering. 

 Employing GARCH models on the Athens Stock Exchange, 

Siourounis (2002) and Athanassiou, Kollias and Syriopoulos (2006) show 

that asymmetric leverage effect is statistically acceptable for Athens Stock 

Exchange. Employing GARCH methodologies, Kumar and Dhankar 

(2010) find the presence of conditional heteroskedasticity and asymmetric 

effect in US stock market returns. Goudarzi and Ramanarayanan (2011) 

reveal that BSE500 (India) returns series reacts to the good and bad news 

asymmetrically. Rayhan, Sarkar and Sayem (2012) reveal that monthly 

DSE returns follow GARCH properties. They also find that DSE return 

volatility follows leverage effect or asymmetric volatility.   

The stock markets of Bangladesh have progressed accompanied by the 

overall economy after the process of liberalization in early 1990s. Besides, 

the stock market crashes in 1996 and 2010-11 have enlightened that it is 

important to protect the stock market from drastic fluctuations. This 
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scenario has generated a question-what kinds of volatility characteristics 

of stock returns prevail in the Bangladesh stock markets? Thus, assessing 

the volatility of stock returns in Bangladesh would be an informative 

examination as there are several indications for investors and 

policymakers. To date, at least to our knowledge, no comprehensive 

investigations have done on modeling volatility of both the stock markets 

in Bangladesh. The aim of this paper is to fill this void by 

comprehensively investigating the extent to which the DSE and CSE 

exhibit the stylized facts. It is also very significant to detect which model 

is a better fit for the DSE and CSE as different models fit well for different 

stock market return series. The study is organized in four sections as 

follows: Section 2 presents the data and methodology; and Section 3 

reports the findings; and Section 4 concludes the study. 

 

2. Methodology 

2.1 Data and Data Sources 

Bangladesh has two stock exchanges: Dhaka Stock Exchange (DSE) 

and Chittagong Stock Exchange (CSE). In this study, we use daily returns 

data of all share price index (DSI) from DSE for the period of 02 January 

1993 to 27 January 2013 with a total of 4823 observations. The daily 

returns data of all share price index (CASPI) from CSE are also used from 

01 January 2004 to 20 August 2015  with  a  total  of  2832 observations. 

DSI data are provided in CD-ROM by the central library of the Dhaka 

Stock Exchange, while CASPI data are collected from the official website 

of CSE. The analysis is done using the EViews 8.1 econometric software 

packages. The daily data of two indices of different periods obtained from 

DSE and CSE are used to calculate returns as follows: 

     (1)                                                            (1)                       

where, R = Daily return, Ln = Natural Log, Pt= Price Index at time t, and 

Pt- 1= Price Index at time t-1. 

2.2 Research Methods 

The modeling process consists of four stages: identification, 

specification, estimation and diagnostic checking (Cromwell, Labys and 

Terraza, 1994). Identification stage of volatility modeling in this study 

covers descriptive statistics, unit root tests and autocorrelation test. We 

specify and estimate GARCH model to assess the symmetric volatility of 

stock returns and EGARCH model to explore the asymmetric volatility of 
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stock returns prevailing in the Bangladesh stock markets. The diagnostic 

checking of the estimated GARCH models is performed by using Ljung-

Box test statistics and ARCH LM test up to a specific order.  

2.2.1 Descriptive Statistics  

Descriptive statistics, such as, mean, median, standard deviation, 

skewness, kurtosis and Jarque-Bera are estimated in this study. The 

normal distribution is found to have a kurtosis of three. A distribution with 

kurtosis greater than three is leptokurtic that is a well-known stylized fact 

in the finance literature. Krichgassner and Wolters (2007) state that the 

rejection of the normality test based on Jaque-Bera test gives evidence for 

the existence of GARCH effects. 

2.2.2 Unit Root Test 

Since, ARMA-GARCH processes are stationary processes, we have to 

make sure that both the return series are stationary. Thus, we have applied 

two extensively used unit root test, namely Augmented Dickey Fuller 

(ADF) and Phillips-Peron (PP) test. The ADF test is performed using the 

following three equations: 

 

 

 
where α is an interecpt (constant), β is the coefficient of time trend T, γ 

and δ are the parameters where, γ = ρ-1, ∆Y is the first difference of Y 

series, m is the number of lagged first differenced term, and ε is the error 

term. The test for a unit root is conducted on the coefficient of Yt-1 in the 

regression.  

Phillips and Perron (1988) have developed a non-parametric unit root 

conception. The PP test test is performed using the following equation 

         
where α is a constant, β is the coefficient of time trend T, γ is the 

parameter and ε is the error term.  

2.2.3 Autocorrelation Test 

Another well-known stylized fact in finance literature related to stock 

market return is volatility clustering. Volatility clustering means the data is 

auto-correlated. The nonzero auto-correlation of stock return series 
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associated with Ljung -Box Q statistics suggest for the presence of ARCH 

effect or volatility clustering in the returns series. This volatility clustering 

nature of DSI and CASPI returns is checked applying autocorrelation test. 

 The volatility clustering nature is also checked  using serial 

autocorrelation test of squared returns.  If the returns and squared returns 

of DSI and CASPI are correlated, we should follow a GARCH process to 

model our time series. 

2.2.4 GARCH(1,1) Model 

This study employs an extended version of Autoregressive Conditional 

Heteroskedasticity (ARCH) model named, Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model in view of the fact that 

GARCH is a parsimonious representation of higher order ARCH model. 

 Moreover, Alexander (2001) argues that ARCH models are not often 

used in financial markets because the simple GARCH models perform so 

much better. Since a large number of lags usually required by the ARCH 

(p) process, Bollerslev (1986) develops GARCH (p,q) model,where the 

variances of returns follow an ARMA process. We apply GARCH(1,1) 

model as Alexander (2001) argues that it is rarely necessary to use more 

than a GARCH(1,1) model. Additionally, Bollerslev (1986), Engle (1993) 

and Brook and Burke (1998) argue that standard GARCH (1,1) model is 

sufficient to capture all of the volatility clustering present in data.  Both 

Auto Regressive (AR) and Moving Average (MA) components may be 

included in the variance equation of GARCH (1,1) model. The symmetric 

GARCH (1, 1) model jointly estimates two equations named the 

conditional mean equation and the conditional variance equation. The 

conditional mean equation can be written in the following form: 

 
where, represents the monthly return. and are the autoregressive 

and moving average components respectively. p and q are the orders of the 

process. Depending on the values of p and q, we can distinguish four 

different forms of the mean equation. i) When p=0 and q=0, the mean 

equation is a random walk model. ii) When p>0 and q>0, the mean 

equation is an ARMA(p,q) process. iii) When p>0 and q=0, the mean 

equation is an AR(p) process. iv) When p=0 and q>0, the mean equation is 

an MA(p) process. Using Box Jenkins methodology and Schwarz 

Information Criteria (SIC), an appropriate mean equation of GARCH (1,1) 
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model is formulated for this study. The conditional variance equation is 

the fundamental contribution of the GARCH (p,q) model and can be 

written in the following form: 

                    

 
 

 
where, is the set of all information available at time t-1. Ω is the mean 

of yesterday’s forecast. is the coefficient of the ARCH term  and is 

the coefficient of the GARCH term . A large positive value of  

indicates strong volatility clustering is present in the time series, while a 

large value of  indicates that the impact of the shocks to the conditional 

variance lasts for a long time before dying out, i.e., volatility is persistent. 

α+β is less than one or very close to one is an indication of a covariance 

stationary model with a high degree of persistence and long memory in the 

conditional variance.  

2.2.5 EGARCH (1,1) Model 

It is usually observed in stock markets that volatility is higher in a 

falling market than in a rising market. The symmetric GARCH model 

cannot capture this leverage or asymmetric effect which has become quite 

visible in equity markets during the last two decades. In order to correct 

the weaknesses of GARCH model, particularly with regard to its failure to 

address the issue  of  asymmetric  effect  in  the  volatility, the asymmetric 

volatility model such as exponential GARCH (EGARCH) is proposed. 

The first asymmetric GARCH model named, EGARCH model developed 

by Nelson (1991) can explain the existence for asymmetry in volatility. 

The conditional variance equation of EGARCH (1, 1) model can be 

written in the following form: 
 

(8) 
 

where,  term shows  the  asymmetric  impact  of  positive  and  

negative  Shocks.  The asymmetry term γ< 0 implies that negative shocks 

has a greater impact on volatility rather than the positive shocks. The 

negative asymmetric term also suggests for leverage effect that negative 

shocks do obviously have a bigger impact on future volatility than positive 

shocks of the same magnitude. 
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2.2.6 Diagnostic Checking  

The performance of the estimated GARCH models is evaluated by 

using Ljung-Box test statistics, for instance Q(p), and Q2(P). These tests 

examine the null hypothesis of no autocorrelation and homoscedasticity in 

the estimated residuals and squared standardized residuals up to a specific 

lag respectively. ARCH LM test is also used to test the null hypothesis of 

no remaining ARCH effects up to a specific order.  

 

3. Empirical Results 

3.1 Data Statistics 

Descriptive statistics of the daily returns of RDSI and RCASPI are 

shown in Table 1. We observe that the kurtosis of 257.593 and 9.723853 

of RDSI and RCASPI respectively mean that distributions are leptokurtic, 

i.e., both return series have fatter tails than a normal distribution where 

there are higher likelihood of large gains or large losses on an investment. 

This excess kurtosis also indicate that the volatility of the investment in 

DSE and CSE of Bangladesh is high. It suggests that the Bangladesh stock 

market returns exhibit leptokurtosis which is a well-known stylized fact in 

the finance literature. Jarque-Bera statistics imply that daily distributions 

of stock market returns are not normally distributed. Therefore, the 

rejection of the normality test based on Jarque-Bera test gives evidence for 

the existence of GARCH effects. 

3.2 Results of Unit Root Tests 

The results of ADF and PP  unit root tests in Table 2 reveal that the null 

hypothesis of unit root is strongly rejected at one percent significant level 

for the RDSI and RCASPI. It confirms that all the return series are 

stationary, that is,  they do not follow a random walk. Since, both the 

return series are stationary, we can follow GARCH processes. 

3.3 Results of Autocorrelation Test 

The volatility clustering nature of DSI and CASPI returns is confirmed 

by the autocorrelation test that is reported in Table 3. Table 3 shows that 

there is highly significant autocorrelation for all lags from lag 1 to lag 30 

for the returns based on the Ljung -Box Q statistics. This may be seen as 

evidence for the presence of ARCH effect or volatility clustering in both 

the returns series. To confirm the results, the autocorrelation coefficient of 

the DSI and CASPI returns for squared residuals are also calculated. The 

Ljung-Box Q-statistics associated with the p values of the squared values 

of RDSI accept the null hypothesis of no autocorrelation up to 30 lags, 

http://financial-dictionary.thefreedictionary.com/Gains
http://financial-dictionary.thefreedictionary.com/Losses
http://financial-dictionary.thefreedictionary.com/Investment
http://financial-dictionary.thefreedictionary.com/Volatility
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while the squared values of RCASPI do not accept the null hypothesis at 

1% level of significance. Thus, the volatility clustering nature of RCASPI 

is also established by serial autocorrelation test of squared returns.  Since 

the returns of DSI, and returns and squared returns of CASPI are 

correlated and not normally distributed, we follow a GARCH process to 

model our time series. 

3.4 Results of the Conditional Mean Equations of GARCH(1,1) and 

EGARCH(1,1) Models 

In order to determine the conditional mean equation of the 

GARCH(1,1) model that will best fit the data, 36 Autoregressive Moving 

Average (ARMA) processes of different orders are fitted to  avoid 

generating autocorrelation in the squared residuals of the dependent 

variable of the variance equation. We choose the optimal model based on 

Schwarz Information Criteria (SIC) as Enders (2010) argues that SIC 

always selects a more parsimonious, i.e., lower order model compared to 

the Akaike Information Criteria (AIC). Given the 36 estimated ARMA 

models, the ARMA (0,1) model provides the lower value of SIC for RDSI, 

and ARMA (0,0,) model provides the lower value of SIC for RCASPI. 

Thus, MA model of order (1) is preferred for the RDSI, while no ARMA 

term is added for the RCASPI. Table 4 shows the results for the estimated 

models from which the p-value associated with the MA(1) coefficient is 

statistically significant for RDSI, and constant coefficient is statistically 

significant for RCASPI. 

 The ARCH-LM tests shown in Table 4 evidence that the estimated 

residuals exhibit autoresgressive heterskedasticity (ARCH effect).  

Thus, we then proceed  a symmetric MA(1)-GARCH(1,1) model and 

an asymmetric MA(1)-EGARCH(1,1) model to estimate volatility 

characteristics of stock returns prevail in the Dhaka Stock Exchange. 

 Besides, GARCH(1,1) Model and EGARCH(1,1) model are used to 

estimate the stylized facts of stock returns prevail in the Chittagong Stock 

Exchange. 

3.5 Results of the MA(1)-GARCH(1,1) and GARCH(1,1)  Models 

In order to assess the well-known stylized facts of stock returns 

prevailing in the Bangladesh stock market, the MA(1)-GARCH(1,1) 

model for RDSI and GARCH(1,1) model for RCASPI are used.  Table 5 

reports the results of the mean and variance equations of the estimated 

models for all share price indices returns of DSE and CSE. The mean 

equation of the estimated MA(1)-GARCH(1,1) model shows that the 



  Modeling Stock Market Volatility Using Univariate GARCH … 

 

69 

constant µ is close to zero and significant at 10% level, while 

GARCH(1,1) model shows that the constant µ is close to zero and 

significant at 1% level. The coefficient of MA(1) is highly significant, 

indicating that the previous period returns play a vital role in determining 

the current stock market return in DSE. All the parameters in the variance 

equations (ω, α and β) have the expected positive signs and more 

importantly, ω, α and β are highly significant, meaning that the non-

negative conditional variancesare found for both the stock markets in 

Bangladesh. 

Thus, the estimated MA(1)-GARCH(1,1) and GARCH(1,1) models 

give the impression to capture volatility clustering in our data quite 

precisely. 

The sum of the ARCH and GARCH coefficients is less than 1 (α + β = 

0.98 for CSE, and α + β = 0.60 for DSE) which implies that  the 

unconditional variance of ɛt or ht
2 is stationary. The sum of the ARCH and 

GARCH coefficients measures the persistence of volatility, and this is not 

very close to 1 for DSE means that a shock to the Dhaka stock exchange 

volatility would not last a long time, while the sum of the ARCH and 

GARCH coefficients for CSE is nearly close to 1 means that a shock to the 

Chittagong stock exchange volatility is likely to last a long time. The 

significant GARCH term β  proves that MA(1)-GARCH(1,1) and 

GARCH(1,1)  are the appropriate model to account volatility on the DSE 

and CSE respectively, and that volatility in the present period influences 

volatility in the next period, while the highly significant ARCH term α 

indicates a positive relationship between shocks and volatility in the 

Bangladesh stock market. Table 5 also reports that α is lower than β, 

which implies that the volatility of the stock markets in Bangladesh is 

affected by past volatility more by related news from the past period. With 

regard to diagnostic fit, the estimated MA(1)-GARCH(1,1) model satisfies 

all conditions of the GARCH theory based on Ljung -Box Q statistics and 

ARCH-LM tests. 

3.6 Results of the MA(1)-EGARCH (1,1) Model and EGARCH (1,1) 

Model 

The basic GARCH model is symmetric and does not capture the 

asymmetric effect that is inherent in most stock market returns data, which 

is also known as the leverage effect. In financial economics, the 

asymmetric or leverage effect refers to the characteristics of time series on 

http://www.collinsdictionary.com/dictionary/english-thesaurus/with-regard-to#with-regard-to_1
http://www.collinsdictionary.com/dictionary/english-thesaurus/with-regard-to#with-regard-to_1
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asset prices that bad news tends to increase volatility more than good 

news. 

In order to estimate the level of asymmetric volatility of stock returns 

prevailing in the DSE, the MA(1)-EGARCH(1,1) model is used, while 

EGARCH (1,1) model is used for CSE. Table 6 reports results of the mean 

and variance equations of the estimated models for the all share price 

returns of Dhaka Stock Exchange and Chittagong Stock Exchange. 

The asymmetry term γ is positive and insignificant for CSE suggesting 

that the volatility spill-over mechanism is not asymmetric in Chittagong 

stock exchange. The mean and variance equations of the estimated MA(1)-

EGARCH(1,1) model for DSE show that all the parameters are highly 

significant at 1% level. This is a strong indication for a leverage effect in 

DSE. The positive coefficient of ABS(RESID(−1)/ SQRT(GARCH(−1))) 

implies that positive innovations (unanticipated price increases) are more 

destabilizing than negative innovations. In fact, the asymmetry term γ is 

negative and highly significant for DSE. This implies that negative shock 

has a greater impact on volatility rather than the positive shocks of the 

same magnitude in Dhaka stock exchange. The significance of negative 

shocks persistence or the volatility asymmetry in DSE indicates that 

investors of DSE are more prone to the negative news in comparison to the 

positive news. In terms of diagnostic fit presented in Table 6, the 

estimated model for DSE satisfies all conditions of the GARCH theory 

based on Ljung -Box Q statistics and ARCH-LM tests, while 

EGARCH(1,1) model for CSE fails to satisfy all conditions of the 

GARCH theory. 

 

4.  Conclusion  

In the above analysis, we investigate the stylized facts of stock returns 

for Dhaka Stock Exchange and Chittagong Stock Exchange. The study 

uses GARCH models  to  arrive  at  the objectives  of  the  study 

employing daily return series of DSI from DSE and CASPI from CSE for 

the period of 02 January 1993 to 27 January 2013 and 01 January 2004 to 

20 August 2015 respectively.The excess kurtosis impliesthat the 

Bangladesh stock market returns exhibit leptokurtosis which is a well-

known stylized fact in the finance literature. Since the returns of DSI and 

CASPI are stationary, correlated and non-nomally distributed, we follow a 

GARCH process to model our time series. Using Box-Jenkings procedure, 

the study proceeds a symmetric MA(1)-GARCH(1,1) model and an 
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asymmetric MA(1)-EGARCH(1,1) model for Dhaka Stock Exchange, 

while GARCH(1,1) model and EGARCH(1,1) model for Chittagong Stock 

Exchange. The results of the estimated MA(1)-GARCH(1,1) and 

GARCH(1,1) models reveal that the stock market of Bangladesh captures 

volatility clustering.  The sum of the ARCH and GARCH coefficients 

reveals that the volatility  of DSE is moderately persistent, while the 

volatility  of CSE is extremely persistent. Considering the existence of the 

asymmetric effects of shocks on the return volatility in the Bangladesh 

stock markets, we also fit the data with the MA(1)-EGARCH(1,1) and 

EGARCH(1,1) models. The results indicate that the volatility spill over 

mechanism is not asymmetric in Chittagong stock exchange. The negative 

and highly significant γ indicates that the asymmetric shocks or leverage 

effect exists in the Dhaka Stock Exchange. That is,  bad news (negative 

shocks) has a larger impact on DSI return volatility than good news 

(positive shocks). With regard to diagnostic fit, the estimated models for 

DSE satisfy all conditions of the GARCH theory based on Ljung -Box 

Qand Q2 statistics as the estimated models are free from serial 

autocorrelation up to 36 lags. Moreover, the ARCH LM test supports that 

the models succeed in removing conditional heteoskedasticity up to 36 

lags. In contrast, the GARCH models are inadequate in modeling the 

volatility of Chittagong stock market return as Ljung-Box Q and Q2 tests 

suggest that the estimated models are not free from serial autocorrelation 

up to 36 lags. Additionally, GARCH(1,1) model for CSE fails in removing 

conditional heteroskedasticity up to 12 lags, while EGARCH(1,1) model 

up to 36 lags. The minimum AIC, SIC and the maximum Log Likelihood 

values of the MA(1)-GARCH(1,1) model for DSE indicate that it is 

adequate in modeling the volatility of Dhaka stock market returns. We 

believe that this study would be of assistance to investors and policy 

makers at Bangladesh and overseas. Future studies can find out whether 

macroeconomic variables volatility has any impact on the stock returns 

volatility in Bangladesh. 
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Table 1: Descriptive Statistics for Daily Returns ofRDSI and RCAPSI 
 

 RDSI RCASPI 

 Mean  0.046789  0.077694 

 Median  0.000757  0.062487 

 Maximum  59.90334  13.07073 

 Minimum -24.95818 -7.764455 

 Std. Dev.  1.844108  1.388456 

 Skewness  7.709156  0.091001 

 Kurtosis  257.5930  9.723853 

 Jarque-Bera  13073409*  5338.712* 

 Observations  4823  2832 
 

Note: * indicates significance at 1% percent level. 

 

Table 2: Results of Augmented Dickey Fuller (ADF) andPhillips-

Peron (PP) Test 
 

Return Series None Intercept  Intercept with trend Remarks 

ADF Test 

RDSI -62.77181 

(-2.565442) 

-62.80204 

(-3.431524) 

-62.79559 

(-3.959941) 

No Unit 

Root 

RCASPI -50.82473 

(-2.565779) 

-50.96763 

(-3.432469) 

-51.04995 

(-3.961284) 

No Unit 

Root 

PP Test 

RDSI -63.20936  

(-2.565442) 

-63.17421  

(-3.431524) 

  -63.16799 

(-3.959941) 

No Unit 

Root 

RCASPI -51.40720 

(-2.565779) 

-51.37853 

(-3.432469) 

-51.36163 

(-3.961284) 

No Unit 

Root 
 

Note: MacKinnon 1% critical values for the ADF and PP statistics are in brackets. 

 

Table 3: Tests for Serial Correlation in Daily DSI and CAPSIReturns 

and Squared Returns 
 

 Q (Returns) Q2(Returns) 

Lags RDSI RCASPI RDSI RCASPI 

Q-stat P Q-stat P Q-stat P Q-stat P 

1 48.204 0.000 5.1499 0.023 0.3603 0.548 474.33 0.000 

5 57.009 0.000 12.889 0.024 0.6090 0.988 969.91 0.000 

10 69.149 0.000 23.476 0.009 0.7600 1.000 1765.4 0.000 

15 74.532 0.000 41.592 0.000 0.8471 1.000 2150.6 0.000 

20 77.719 0.000 50.643 0.000 1.1439 1.000 2618.5 0.000 

25 89.812 0.000 65.848 0.000 1.3229 1.000 3108.1 0.000 

30 96.341 0.000 67.248 0.000 2.4026 1.000 3309.6 0.000 
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Table 4: Estimated Models and ARCHHeteroskedasticity Tests 
 

Variable RDSI RCASPI 

 ARMA (0,1) Model ARMA (0,0) Model 

 Coefficient P-Value Coefficient P-Value 

C 0.046791 0.1089 0.077694* 0.0029 

MA(1) 0.104706* 0.0000 - - 

ARCH-LM Heteroskedasticity Tests 

F-statistic 1.760839** 0.0489 568.4766* 0.0000 

Obs*R-squared 21.09887** 0.0490 473.6920* 0.0000 

Notes: * means significance at 1% level and  ** means significance at 5% level. 

Table 5: Estimates of the MA(1)-GARCH(1,1) Model and 

GARCH(1,1) Model 
 

 RDSI RCASPI 

Variable Coefficient P-value Coefficient P-value 

Constant (µ) 0.061298** 0.0667 0.116722* 0.000 

MA(1) Term θ 0.181711* 0.000 - - 

Constant (ω) 1.570802* 0.000 0.044002* 0.0000 

ARCH (1) Term α 0.255310* 0.000 0.146354* 0.0000 

GARCH (1) Term β 0.340166* 0.000 0.835581* 0.0000 

Loglikelihood, AIC, SIC -9397.41, 3.89899, 3.905710 -4440.26, 3.13860, 3.14700 

Residual Diagnostic Fitting 

 RDSI RCASPI 

Lags Q Q2 
ARCH LM 

F-Test 
Q Q2 

ARCH LM 

F Test 

1 - 
0.002 
(0.96) 

0.001 
(0.96) 

5.05 
(0.02) 

13.08 
(0.00) 

13.11 
(0.00) 

6 
10.27 

(0.06) 

0.015 

(1.00) 

0.002 

(1.00) 

19.24 

(0.00) 

18.18 

(0.00) 

2.94 

(0.00) 

12 
16.81 
(0.11) 

0.024 
(1.00) 

0.002 
(1.00) 

27.02 
(0.00) 

22.26 
(0.03) 

1.78 
(0.04) 

36 
38.56 

(0.31) 

0.19 

(1.00) 

0.005 

(1.00) 

52.72 

(0.03) 

48.73 

(0.07) 

1.21 

(0.18) 
 

Notes: P-values are in brackets. * means significance at 1% and  ** means significance at 10%. 
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Table 6: Estimates of the MA(1)-EGARCH(1,1) Model and 

EGARCH(1,1) Model 
 

 RDSI RCASPI 

Variable Coefficient P-value Coefficient P-value 

Constant (µ) 0.183234* 0.000 0.106447* 0.000 

MA(1) Term θ 0.179563* 0.000   

Constant (ω) 0.400580* 0.000 -0.210265* 0.0000 

EARCH (1) Term α 0.338628* 0.000 0.290650* 0.0000 

EARCH-a (1) Term γ -0.049494* 0.000 0.002054 0.8122 

EGARCH (1) Term β 0.489489* 0.000 0.965221* 0.0000 

Loglikelihood, AIC, SIC -9500.93, 3.942332, 3.950395 -4437.549, 3.137393, 3.147896 

Residual Diagnostic Fitting 

 RDSI RCASPI 

Lags Q Q2 
ARCH LM 

F-Test 
Q Q2 

ARCH LM 
F Test 

1 - 
0.00 

(0.98) 

0.00 

(1.00) 

4.76 

(0.02) 

22.53 

(0.00) 

22.66 

(0.00) 

6 
8.60 

(0.12) 
0.00 

(1.00) 
0.00 

(1.00) 
17.90 
(0.00) 

27.50 
(0.00) 

4.45 
(0.00) 

12 
15.33 

(0.16) 

0.01 

(1.00) 

0.00 

(1.00) 

25.44 

(0.01) 

31.49 

(0.00) 

2.49 

(0.00) 

36 
37.96 
(0.33) 

0.17 
(1.00) 

0.00 
(1.00) 

50.55 
(0.05) 

58.11 
(0.01) 

1.42 
(0.04) 

 

Notes: P-values are in brackets. * means significance at 1%. 

 

 


