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This paper presents an assessment of the small-sample
performance of the three well-known estimators of components
variance in random effects model for panel data. The estimators
considered are Swamy-Arora, Wansbeek-Kaptayn and Wallace-
Hussain. To this end, by simulating a one-way error component
model in the form of random effects, small sample performance of
three variance estimators is studied. The implications of these
results for indentifying the model and its estimation are specified.
In these simulations, conditions under which Swamy-Arora
estimator is inferior to alternatives are expressed. It is shown that
in small samples the estimator thus obtained can give highly
wrong guidance. In one-way error component model this small
sample size refers to the number of cross-sections.
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1. Introduction
Three well-known components variance estimators in random effects
models for panel data, are Swamy-Arora, Wansbeek-Kaptayn and
Wallace-Hussain. The aim of this paper is to give guidelines as to
where the researcher is advised to use which one. Traditionally, the
default option of well-known softwares for estimating variance
components of random effects models is Swamy-Arora. In this paper,
after presenting the theoretical back-ground in Section 1, three famous
alternative estimators including Swamy-Arora are re-examined. In
contrast to the well-known arguments in favor of it, which have large-
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sample justifications and are presented in Section 2, we have
mentioned in Section 3 that, by simulating a random effects model and
Monte-Carlo experiment based on it, there are cases in which,
Swamy-Arora estimator (and the corresponding FGLS estimator of the
mean equation) does not have a high mark, hence the alternatives may
outperform it. In other words, the paper aims to turn the attention to
small-sample merits of two other alternatives. Section 5 concludes the
paper.

2. Theoretical Foundations
The basic formulation of one-way random effects model is

iii XY !"# $$%

where

iiti u$% &!

cross-section index ni ,,1 %  (= number of cross-section)
period index Tt ,,1 %    (= number of periods)

%iX  matrix of observations of nonstochastic independent variables
for cross section i

%iY  vector of observations of dependent variable for cross-section i

it&  is the time-variant (idiosyncratic) random error term and iu  refers
to the cross-section random component. This standard error
component model, satisfies the following assumptions,
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For estimation, it is suitable to write the stacked form of the model,
i.e.,

!( $% ZY

where )( XiZ nT !% , )( "#( !% , ) *+++% nXXX ! !1 , ) *+++% nYYY ! !1 ,

) *+++% n!!! ! !1 . It is well-known that OLS estimates, although
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unbiased, are inefficient; in contrast, GLS estimates are BLUE, which
in turn require the availability the var-cov matrix of ! denoted by ,,

.)( ,%- !CovVar

The matrix , is computed as follows,
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By defining 222
1 &''' $% uT , we have
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where Tn JIH .%  and Tn EIR .% .

GLS estimation requires 1-,   which by spectral decomposition of ,,
based on characteristic roots and vectors of ,, we have
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Applying OLS on this transformed model gives GLS estimates.
Transformed vector of the dependent variables observations is
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matrix of observations for independent variables. In the next step, we
must estimate 2

1'  and 2
&' , which if the terms it! were known, then
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The Best Quadratic Unbiased estimator (BQU) for 2
&'  is
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To sum up, the BQU estimators of 2
1'  and 2

&'  based on 1 and 2 are
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To give a more operational formulae for (2) and (1) we note that
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Thus if the compound error terms it! were known, the operational

formulae for the variance estimators would be
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Unfortunately, the population error terms, iu  and it& , and hence it! ,

are not known, hence (1)+ and (2)+ are not operationally feasible. This
is the critical point on which the paper is focused. The point is that
there are several ways to estimate (1)+ and (2)+ in practice. Wallace
and Hussain (1969) use OLS residuals OLS!̂  instead  of  the  true !.

Amemiya (1971) suggests using fixed-effects or within estimates
residual instead of OLS residual. Following the work of Wansbeek
and Kapteyn (1978) a number of softwares refer to the estimates of

2
1'̂  and 2ˆ&'  as Wansbeek and Kapteyn estimators of variance

components. Swamy and Arora (1972) propose running two
regressions (within and between) to estimate 2ˆ&'  and 2

1'̂  from

respective mean square errors. In the followings, we refer to these
estimators by the abbreviations WH, WK and SA, respectively.

3. Empirical Results
As to these estimators of variance components of random effects
model, there are a vast literature, which compare their large-sample
properties. Some of the well-known references are Wallace-Hussain
(1969), Amemiya (1971), Swamy-Arora (1972), Fuller-Battese
(1974), Rao-Kleffe (1980) and Baltagi (1981). All the writers
emphasize that these variance components estimators are consistent
but may be biased in finite samples.

It should also be noted that if the lagged values of the dependent
variable are used as explanatory variables, these estimators of the
variance components may be inconsistent. Matyas and Sevestre
(1992) point out that these estimators are MINQUE and they are
asymptotically (nT=> or n=>) equivalent to estimators (1)+ and (2)+
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if within residuals are used. If in (1)+ and (2)+ the  OLS  residuals  are
used then these estimators are less efficient than the MINQUEs ones.
With these observations, the usefulness of SA estimators of variances
are heavily emphasized in the literature so that the default option of
the well-known softwares is SA.

As  to  the  FGLS  (or  EGLS)  estimator  of " vector in the basic
model, Maddala-Mount (1973) and Baltagi (1981) show that the
estimation method used to obtain the estimated variance components
has little effect on the behavior of the FGLS (or any other two-step
estimation method). The basic requirement is that the method must be
consistent. Recently, some authors have warned against the negative
variance estimates in panel data models. Magazzini and Calzolari
(2010) re-examine this neglected point in their research work.

4. Relative Performance of Components Variance Estimators in
Small Samples
Our aim is a reappraisal of the relative advantage and disadvantage of
WH, WK and SA estimators especially in small samples. In contrast
to the large-sample merits of SA outlined in the last section, in small
samples, several cases exist which lower its ranking relative to WH
and WK. These cases are as follows:
i) In section (1) the mathematical formulae for computing 2

1'̂  and 2ˆ&'
have been stated. Some of the disadvantages of SA estimator relative
to WH and WK originate from those formulae. The point is that since
SA uses between and within estimates for computing 2

1'̂  and 2ˆ&'  and

the between regression reduces the sample size, the SA estimates may
go wrong in small samples (with small n). Specifically with one
parameter in " and only two cross-sections, whether or not, the
variance of cross-section random term iu  is big, although the basic

model is  truely random effects,  SA estimator give a 2ˆ u'  close to zero

and the situation is worse if the variance of the cross section term ( iu )

is large. The following simulation will make the point clear. In this
simulation the basic model is

iititit uxy $$$% &"# .
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To break down the mathematical formula of SA, assume there are
only 2 cross-sections. Also, assume iu  has only two realizations, with
10 period in the panel, the computer output for WH, WK and SA are
as follows,

Table 1.
Dependent Variable: Y?
Method: Pooled EGLS (Cross-section random effects)
Date: 01/27/12   Time: 14:34
Sample: 1 10
Included observations: 10
Cross-sections included: 2
Total pool (balanced) observations: 20
Swamy and Arora estimator of component variances
Variable Coefficient Std. Error t-Statistic Prob.
C 1.29E+08 0.034907 3.69E+09 0.0000
X? -7518791. 0.002914 -2.58E+09 0.0000
Random Effects (Cross)
1--C 0.000000
2--C 0.000000

Effects Specification
S.D. Rho

Cross-section random 0.000000 0.0000
Idiosyncratic random 0.075145 1.0000

Weighted Statistics
R-squared 0.751879     Mean dependent var50000057
Adjusted R-squared 0.738095     S.D. dependent var 51298887
S.E. of regression 26253055     Sum squared resid 1.24E+16
F-statistic 54.54538     Durbin-Watson stat 0.086340
Prob(F-statistic) 0.000001

Unweighted Statistics
R-squared 0.751879     Mean dependent var50000057
Sum squared resid 1.24E+16     Durbin-Watson stat 0.086340

Table 2.
Dependent Variable: Y?
Method: Pooled EGLS (Cross-section random effects)
Date: 01/27/12   Time: 14:34
Sample: 1 10
Included observations: 10
Cross-sections included: 2
Total pool (balanced) observations: 20
Wallace and Hussain estimator of component variances
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Variable Coefficient Std. Error t-Statistic Prob.
C 50000005 49999995 1.000000 0.3306
X? 5.007942 0.196561 25.47775 0.0000
Random Effects (Cross)
1--C 49999995
2--C -49999995

Effects Specification
S.D. Rho

Cross-section random 70710671 1.0000
Idiosyncratic random 2.524876 0.0000

Weighted Statistics
R-squared 0.998439     Mean dependent var 0.564580
Adjusted R-squared 0.998352     S.D. dependent var 14.76943
S.E. of regression 0.599583     Sum squared resid 6.470996
F-statistic 11510.76     Durbin-Watson stat 0.036333
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared -0.000001     Mean dependent var 50000057
Sum squared resid 5.00E+16     Durbin-Watson stat 4.70E-18

Table 3.
Dependent Variable: Y?
Method: Pooled EGLS (Cross-section random effects)
Date: 01/27/12   Time: 14:35
Sample: 1 10
Included observations: 10
Cross-sections included: 2
Total pool (balanced) observations: 20
Wansbeek and Kapteyn estimator of component variances
Variable Coefficient Std. Error t-Statistic Prob.
C 49999995 50000001 1.000000 0.3306
X? 5.007942 0.005850 856.0498 0.0000
Random Effects (Cross)
1--C 50000005
2--C -49999985

Effects Specification
S.D. Rho

Cross-section random 70710671 1.0000
Idiosyncratic random 0.075145 0.0000

Weighted Statistics
R-squared 0.999975     Mean dependent var 0.016803
Adjusted R-squared 0.999974     S.D. dependent var 14.75808
S.E. of regression 0.075145     Sum squared resid 0.101643
F-statistic 732821.3     Durbin-Watson stat 2.313117
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Prob(F-statistic) 0.000000
Unweighted Statistics

R-squared -0.000001     Mean dependent var 50000057
Sum squared resid 5.00E+16     Durbin-Watson stat 4.70E-18

Although the true model is random effects, the SA estimator
wrongly  rejects  it.  This  fact  stems  from  a  zero 2ˆ u' . On the contrary,

nonzero 2ˆ u'  from WH and WK truly accepts the random effects

model. The result is that the desirable large sample performance of SA
estimators, which has made it the default option in softwares, does not
linearly generalize to small samples. Unfortunately, small sample
performance may be so divergent that make WK or WH preferable.

ii) In contrast to the indifference quoted in the last section as to the
variance estimator used in FGLS estimates of ", the bias in small
samples with large variance of iu  may be considerable. The above

tables show the FGLS estimates of " from the simulation. Note that
the  true  value  of " is  5.  It  is  evident  that  the  bias  of  the  FGLS
estimator based on SA is drastically large. Of course, only one
estimate of the parameter cannot be used for illustrating the magnitude
of  bias,  so  in  the  following  a  Monte-Carlo  experiment  is  offered  that
proves  the  claim.  For  the  moment  it  is  merely  presented  as  to  be
contrasted with FGLS estimators based on WT and WK which truly
estimate " equal to 5.

Table 4. WK
Correlated Random Effects - Hausman Test
Pool: Untitled
Test cross-section random effects
Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.
Cross-section random 0.000000 1 1.0000
* Cross-section test variance is invalid. Hausman statistic set to zero.
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.)  Prob.
X? 5.007942 5.007942 -0.038602 NA
Cross-section random effects test equation:
Dependent Variable: Y?
Method: Panel Least Squares
Date: 01/28/12   Time: 18:26
Sample: 1 10
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Included observations: 10
Cross-sections included: 2
Total pool (balanced) observations: 20
Variable Coefficient Std. Error t-Statistic Prob.
C 50000005 0.063682 7.85E+08 0.0000
X? 5.007942 0.005850 856.0498 0.0000

Effects Specification
Cross-section fixed (dummy variables)
R-squared 1.000000     Mean dependent var 50000057
Adjusted R-squared 1.000000     S.D. dependent var 51298887
S.E. of regression 0.075145     Akaike info criterion -2.201304
Sum squared resid 0.095996     Schwarz criterion -2.051944
Log likelihood 25.01304     Hannan-Quinn criter. -2.172147
F-statistic 4.43E+18     Durbin-Watson stat 2.449182
Prob(F-statistic) 0.000000

Table 5. WH
Correlated Random Effects - Hausman Test
Pool: Untitled
Test cross-section random effects
Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.
Cross-section random 0.000000 1 1.0000
* Cross-section test variance is invalid. Hausman statistic set to zero.
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.)  Prob.
X? 5.007942 5.007942 -0.000000 NA
Cross-section random effects test equation:
Dependent Variable: Y?
Method: Panel Least Squares
Date: 01/28/12   Time: 18:24
Sample: 1 10
Included observations: 10
Cross-sections included: 2
Total pool (balanced) observations: 20
Variable Coefficient Std. Error t-Statistic Prob.
C 50000005 0.063682 7.85E+08 0.0000
X? 5.007942 0.005850 856.0498 0.0000

Effects Specification
Cross-section fixed (dummy variables)
R-squared 1.000000     Mean dependent var 50000057
Adjusted R-squared 1.000000     S.D. dependent var 51298887
S.E. of regression 0.075145     Akaike info criterion -2.201304
Sum squared resid 0.095996     Schwarz criterion -2.051944
Log likelihood 25.01304     Hannan-Quinn criter. -2.172147
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F-statistic 4.43E+18     Durbin-Watson stat 2.449182
Prob(F-statistic) 0.000000

Table 6. SA
Correlated Random Effects - Hausman Test
Pool: Untitled
Test cross-section random effects
Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.

Cross-section random
21969886919159
46900 1 0.0000

** WARNING: estimated cross-section random effects variance is zero.
Cross-section random effects test comparisons:
Variable Fixed Random Var(Diff.)  Prob.
X? 5.007942 -7518791.2408770.000026 0.0000
Cross-section random effects test equation:
Dependent Variable: Y?
Method: Panel Least Squares
Date: 01/28/12   Time: 18:27
Sample: 1 10
Included observations: 10
Cross-sections included: 2
Total pool (balanced) observations: 20
Variable Coefficient Std. Error t-Statistic Prob.
C 50000005 0.063682 7.85E+08 0.0000
X? 5.007942 0.005850 856.0498 0.0000

Effects Specification
Cross-section fixed (dummy variables)
R-squared 1.000000     Mean dependent var 50000057
Adjusted R-squared 1.000000     S.D. dependent var 51298887
S.E. of regression 0.075145     Akaike info criterion -2.201304
Sum squared resid 0.095996     Schwarz criterion -2.051944
Log likelihood 25.01304     Hannan-Quinn criter. -2.172147
F-statistic 4.43E+18     Durbin-Watson stat 2.449182
Prob(F-statistic) 0.000000

iii) This bias in " and 2ˆ u'  of SA estimator may inject confusing

signals to the researcher about the true model. For example, Hausman
test gives two polar values of 0 and 1 for the prob-values for SA and
WH/WK estimators. The prob=0 for SA wrongly rejects the random
effects model and signals in favor of fixed effects model. If follows
that neglecting this fact (small n and big variance of iu ) and using SA

estimator, is not only an important point for FGLS estimation of the
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parameters of the mean equation but also a critical point for
identifying the true basic model (random or fixed effects) in the first
place. This can mislead the researcher at the starting point. The
computer output is presented in tables 4, 5 and 6.
iv) Some softwares introduce a RHO(=?) coefficient which shows the
relative strength of cross-section random term ( iu ). In the above

simulation, a truly random effects model according to the RHO for
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 falsely appears as an absolutely non-random one,

since the corresponding RHO is zero. In contrast to this false
indication of RHO based on SA, the respective RHO for WH or WK
indicates that the model is random effects.
Interestingly, although WH has been historically developed prior to
SA and WK, in small samples (especially in terms of n) can perform
better, so that in the above simulation for 1 cross-section alone, while
WH is computable, this is not the case for SA or WK.
v) Non-normal distribution of idiosyncratic error term.  Case  (i) is
valid irrespective of the variance of it& . When the number of

parameters is greater or equal to the number of cross-sections, SA is
not computable. Cases (ii) and (iii) follow directly from (i). Now, the
point is that if the variance of it& , is also big and presumably i&  is not

unimodal,  in  terms  of  MSE,  again  WK  and  WH  can  outperform  SA.
Specifically, when big variance applies to idiosyncratic error term
( it& ) there can be large bias and inefficiency in the FGLS estimator of

" based on SA estimator. This fact, with large variance of iu , can give

higher ranking to WH and WK estimators relative to SA. This result
can be shown by the following simulation. Assume the true model is

iititit uxy $$$% &"#
11 realizations for iu  are considered. The true " is 5 but as the results

indicate, the bias and also the MSE of the estimates based on SA may
be large and in this respect WH and WK outperform the SA. To prove
this, assume it&  has a bimodal distribution. Specifically, assume the

idiosyncratic error term has double-sided chi-square distribution with
13 degree of freedom. (that is, in addition to the usual shape of chi-
square distribution, assume it has a mirror-image in the negative
quadrant). A Monte-Carlo experiment based on 100 repetitions is
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designed and then the estimation is carried out. As the following table
shows,  in  terms  of  MSE,  the  FGLS  estimator  of " based  on  SA  is
inferior to WK or WH.

Table 7. Histogram of FGLS estimates of "" based on WK

Table 8. Histogram of FGLS estimates of "" based on WH

This fact gives a big advantage to HW and WK in estimating
random effects model, notwithstanding the emphasis put on SA in the
literature.

To sum up, small n makes SA practically unattainable and large
variance of iu  or/ and i&  makes it inferior relative to WH and WK.

When  the  number  of  the  parameters  of  the  model  is  equal  or  more
than cross-sections, WK or WH may appear to be the only choice.
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Table 9. Histogram of FGLS estimates of "" based on SA

5. Conclusion
By default, softwares estimate random effects FGLS methods by
Swamy-Arora estimator of variance components. This emphasis stems
from its desirable large sample properties. Studies concerning small
sample properties are confined to statements about the bias of
alternative estimators. In this paper, by simulation of a random effects
model, cases in which alternative estimators outperform, are specified.
A summary of the results are as follows:

1. When the number of cross-sections is small the SA estimator
computationally breaks-down. Specifically:
a. If  the  number  of  cross-sections  is  equal  to  the  number  of

parameters, the SA favors the fixed-effects model
wrongly. The panel estimate results in this case are
dramatically false.

b. If the number of cross-sections is smaller than the number
of parameters, mathematically the SA is infeasible while
WH and WK are feasible.

2. When the variance of the cross-section random is large,
although computationally feasible, SA estimators gives wrong
statistical signals; RHO ratios, Hausman tests are invalid.

3. The situation is much worse if the idiosyncratic random
variance is large and/or is not unimodel.

Relevance of these remarks become more important when we consider
that these cases, make FGLS estimates of ", 2

u'  and 2
&'  so biased
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that the judgment as to the true model in terms of fixed or random
effects, becomes blurred.
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