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here these fourteen cases, adding by way of information the nature of
their solutions (real or complex, positive or negative) and the curves
(circle, parabola, hyperbola) used by ‘Omar Khayyam to construct ge-
ometrically their positive solution.

1. z¥=c¢ > 05255 € P,P
2. ¥4bz=¢ z,> 0223 € C,P
3. 234+c=0bz 12 >00r €;z3<0 PH
4. P =bx+e¢ z,>0;2;3<00r € PH
5 z3+az’=c¢ £, >0;z,3<00r ¢ P,H
6. z°+ ¢ = az? z12>00r €;23<0 P,H
7. ¥ =az’+¢ Ty > 05253 € P, H
8. z2+ar’+br=c z,>0;z93<00r £ C,H
9. *+az+c=bz z,5>00r £;25<0 H,H
10. z*+bz+c=az’® z,5>00r €;23<0 C,H
11. 22 =az’+bz+c z,>0;393<00r ¢ HH
12. 28 +ar*=bzx+c z;>0;333<00r ¢ HH
13. 22+bz=az’+¢c z,>0;393>00r € C,H
14. *+c=az®+bz z,,>00r €;23<0 H,H
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powers (in our terms z°,z!,z?) which are in continued proportion, that

is, fulfil the proportion 2? : £ = z : z°. Now this is no longer the case

for third-degree equations, and therefore the former reasonings will not

apply. Let us see what he has to say.
Case of compound equations involving three elements not in con-
tinued proportion, or more, either in continued proportion or not.
This is the case for the two possible categories involving three el-
ements, namely, first, 3, 2 and number, and, second, z3, z and
number, which produce six compound equations; or the single
category involving four elements, namely z3, z2, z and number,
which produces seven compound equations; or others using higher
powers. These do not admit of a treatment with our above alge-
braic resolutions, but only a geometrical one using conic sections.

Case of the two trinomial categories mentioned above. The
three kinds they each comprise do not belong to the domain of
continued proportion. For the ratio of z? to z? is not equal to
the ratio of z? to the number since there exists one power be-
tween z? and the number, namely that of z; neither is the ratio
of £2 to r equal to the ratio of z to the number since there exists
one power between z2 and z, namely that of 2. Thus each of
their six forms is beyond our above algebraic discourse. Indeed,
the unknown which must be expressed and determined in each of
these compound equations is the side of 2%, and the corresponding
analysis leads to applying to a given straight line a given paral-
lelepiped exceeding it, or falling short of it, by a cube. Now this
can be constructed only by means of conic sections.
Quadrinomial category, thus with an additional term. The sit-

uation of continued proportion is met, but the seven types are be-
yond the requirement of the general reasonings. For the unknown
which must be determined is the side of the above mentioned z2.
But it cannot be expressed using algebraic reasonings but only, as
already mentioned, by means of conic sections.

We have here quite clearly, around 1000, a statement that third-
degree equations are not solvable by the usual algebraic reasonings and
that their solution is possible by means of conic sections (if there is a
positive solution). We have further a classification of all third-degree
equations with positive terms and at least one positive solution, a clas-
sification ‘Omar Khayyam thought he was the first to establish: see the
beginning of his Algebre, p. 3 in Woepcke’s French translation, p. 160
in Mossaheb’s Persian translation. (Our text only omits the first case,
that of an equality between 2z and a number, which amounts to no more
than the extraction of a cube root). We shall conclude by enumerating
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3. Case of 2 = pz + q.

The construction is the same as in the first case, but this time the so-
lution z is the segment of straight line AF. We have indeed
AF BF=z(z — p) = ¢.

The text concludes these three constructions with the following re-
marks. (The “side of the unknown quantity” means z.):

It has appeared clearly from the foregoing that the construction
leading to the side of the unknown quantity in each of these three
compound cases is the construction explained by Euclid towards
the end of Book VI of his “Elements”; namely, the application to
a given straight line of a parallelogram which exceeds this line,
or falls short of it, by a square. Indeed, the side of the square
in excess is the side of the unknown quantity in the first com-
pound equation; in the second compound equation, the side of
the unknown quantity is the side of the deficient square; in the
third compound equation, it is the sum of the line to which the
rectangle is applied and the side of the square in excess.

Our author then ends his treatise, the aim of which is to teach alge-
braic reasoning, thus numerical determination of the unknowns, with a
note on higher-degree equations. He remarks first that the three com-
pound equations seen previously admit of both an algebraic and a geo-
metrical resolution (using Euclid’s geometry) because they involve three
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considered in the form of products:

' tpr=gq z(z+p)=g¢
2’ +g=pz z(p-2)=¢
?=pr4gq z(z — p) = g.

In our anonymous text these constructions are as follows.
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1. Case of z? + pz = ¢ (Fig. 5).

Let AB=p, AI=IB, and CB=(2)%.. On the base CG of the square
CB, describe the larger square CE=(2)* + ¢, of which we know the
side CH since we know how to construct the root of a given quantity.
The required rectangle is then AE and the required solution BD=BF.
Indeed, we see that the rectangle AE, being equal to the rectilineal figure
ID+DF+FG, has the known area ¢ and differs from AD, the rectangle
on AB, by a square area.

2. Case of 2% + ¢ = pz (Fig. 6).

Let again AB=p and CB the square on its half. We construct the
square CE=(£)?—g (with (2)? > ¢), which is now smaller than the square
CB. Their difference, ¢, is the sum of the two areas ID and DK, thus
also equal to AI+ID=AE. In that case two rectangles fulfil the condition:
AE, corresponding to the solution DE=DB=z, and DG, equal in size to
the previous rectangle, corresponding to the solution AD=DH=2z".
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1], we obtain (z — 2)? = (2)? + ¢, from which the formula is deduced.
D c

G
H

A E F B
Fig. 3

All these figures illustrate the general formulae but do not represent
graphically the solution to a specific equation since the length of z has
been set to begin with. Euclid’s Elements do, however, enable us to
actually draw the solution and represent it as a segment of straight line.
Qur text explains how.

Three theorems from Euclid’s Flements are used. The first, assumed
to be known, is the construction of the root of a given quantity (that is,
the oot of a given segment of straight line). To do this, we add (Fig.
4) to the given quantity, say a, the unit segment and describe the circle
with diameter a+1. The height at the extremity of a is then /a. This
construction, an application of the theorem of height in a right-angled
triangle, is Elements I1.14.

Va

Fig. 4

The other two theorems are Elements V1.28-29, which teach how
to construct on a known straight line a rectangle (generally, a paral-
lelogram) equal to a given rectilineal figure and exceeding it or falling
short of it by a square. For their application, the three equations are
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but also
AB AD=AE-CE-CD.

We find thus by addition that in both cases
2 AB AD=M+N+S+AE.

Now 2.AB.AD=pz and AE=z?, hence M+N+5=¢. Thus, considering
the equality of the two squares EC and each of the two possibilities for
AD,

Py _ P 2 _ P2
By -g=CE-2y=(-1

which illustrates the formula. F 6 E
c
M
H E
N S
A D B D
Fig. 2

(3) Case of 2% = pz + ¢ (Fig. 3).
The only positive solution is

— P [Py
x—2+ (2) +q.

Let ABCD represent z?, EB be p, and let F be the middle of EB,
so that EF=FB=%. Consider the completed figure, where GD=GH=Z.
Thus the rectangles GC and CF are each equal to £z, whence
DI+IB42 IC=pz. Since IC=I1J, using the equation we find that
GJ+AJ+JF=¢q. Adding now to each side of this equation the square
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AC and CF and the rectangles CG and CE. (In Greek and Arabic texts,
rectangular plane figures are usually designated by the letters at opposite
angles). From the construction, we know that

CE = CG = gz.

Comnsider now the figure formed by CG, CA and CE. According to the
equation, its area, which is z? + pz, must equal ¢. Since CF=(2)?,
the whole square AT is equal to (§)® 4 ¢, but also, by construction, to
(z 4 Z)?. This illustrates the formula.

G F

A B E
Fig. 1

(2) Case of z2 + ¢ = pz (Fig. 2).

The formula is
=P [Py _
= 2 :h (2) Q1

thus with two positive solutions (provided that the discriminant is pos-
itive). In the anonymous treatise these two possibilities are represented
in a single figure.

Let AB be &, thus AC=(%)?, and let AD represent the solution z,
with either AD>AB or AD<AB, according to the two possible signs in
the formula. We now complete the figure (keeping the same letters for
the two solutions, as the manuscript does). Let us designate by N the
smaller square AE and by M and S the (equal) rectangles adjacent to
AE. In the case of the smaller solution,

AB AD=M+N
but also
AB AD=N+S=AFE+5;
in the case of the larger solution, represented by the whole square AE,
AB AD=M+N+S54+EC+CD
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called “simple” (mufrada)

az? = bz
az’=c¢
bz =c¢

and the three equations called “compound” (mugtarana)

ar’ 4+ bz =¢
az’® + ¢ = bz.

az® = bz +ec.

The geometrical figures used to illustrate the formulae of the com-
pound equations are different in nature in the treatises of Khwarizmi
and Abid Kamil. Khwarizmi’s illustrations rely on an intuitive, visual
geometry. Although the use of geometrical figures suggests a Greek in-
fluence, he does not mention the name of Fuclid at all. Abi K&mil has
two kinds of illustration: one is similar to his predecessor’s, but in the
other Euclid is mentioned and reference is made to the two theorems
Elements 11, 5 and II. 6, of which this second kind of illustration is a
direct application. That Euclid’s name and theorems should appear in
Abd Kamil’s Algebra but not in Khwarizmi’s is, by the way, hardly sur-
prising: Khwarizmi’s treatise is elementary and does not suppose any
prerequisites in (then) higher mathematics, whereas Abi Kamil’s Al
gebra is written specifically for mathematicians, that is to say, people
trained in the study of Greek mathematics, chiefly Euclid’s Elements.

Both kinds of illustration survived. Thus, we still find the visual kind
in an anonymous treatise written in 1004/5 (395 of the hegira) which is
said by its author to be a compilation from various sources (MS Mashhad
5325). The illustrations presented there for the compound equations are
the following.

(1) Case of 22 + pz = ¢ (Fig. 1).
There is one positive solution, namely, as enunciated in the text,

e=JBrta-2.

Let the square ABCD represent z?; let us extend AB by BE=% and
then complete the whole square AF, which then includes the squares
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Islamic algebra is said by Ibn Khaldun in his Mugaddima to have be-
gun with Khwarizmf (c. 820) and Abu Kamil (c. 890). In Khwarizmi’s
largely accessible (and probably not very original) Short account of al-
gebra are already found what were to be the three main characteristics
of mediaeval algebra.

First, and unlike in the Greek algebra of Diophantus, there is a com-
plete absence of symbolism. Everything, including numbers, is written
in words. Only a few designations, such as those for the powers of the
unknown, are specific to algebra: “thing” (shay’) is our z, “amount”
(mal) is 2, “cube” (ka‘d) is z3. The higher powers, found in later au-
thors, are expressed, as were the Greek ones, by combining the words
for 27 and z3.

A second characteristic of mediaeval algebra is the recourse to geo-
metrical figures to illustrate the rules of algebraic reckoning or the reso-
lution formulae for equations. In that sense, algebra can be said to have
not yet fully gained autonomy; the geometrical proof was to remain,
indeed for centuries, the criterion of mathematical truth.

A third characteristic, which was of ancient origin and, like the pre-
vious one, to last until late Renaissance times, is the reduction of the
(then) solvable algebraic equations to six specific types with positive co-
efficients and at least one positive solution, namely the three equations
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