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bibliographical and historiographical connections. When working on a
mathematical issue, the goal is to bring it to its proper place inside
Mathematics in a capital M - the Mathematics which is an ideal book-
type object, containing all the cases and all the details in perfect order.
So much, deuteronomic culture. It may sometimes, indeed, be metely
pedantic or scholastic; add in genius, however, and you may get the likes
of Khayyam.

To sum up, my hypothesis cdncerning Khayyam is as follows. The
cultures of the codex gave rise to a new kind of dominant writing -
the deuteronomic. This naturally allows for a treatise motivated by the
impulse to provide exhaustive lists; and in the context of such a treatise,
the very same geometric problems studied by the Greeks suddenly obtain
a new, algebraic meaning. Finally, then, it is this deuteronomic aspect of
medieval culture that accounts for the transformation of Greek geometry
into algebra.
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clusions — which are not in mathematics, but about mathematics: about
the classification of problems, whether historically, bibliographically, or
more meta-mathematically in a more technical sense. This finally is
true of Khayyam’s treatise as a whole ~ as already argued in section 3.1.
above. The treatise is an unending introduction; it does contain, to be
sure, many problems set out and solved — but it is considered throughout
not through problems, but about problems.

In other words, the main difference between Archimedes and Khayydm
is that, whereas Archimedes separates clearly his introductions from
his main text — and uses them, so to speak, merely as introductions -
Khayyam does not separate his general claims at all from his actual
mathematics, and allows the general claims, instead, to govern the par-
ticular claims.

Now, to produce, for the fist time, an exhaustive list of equations
up to the third degree, and to solve them all, and to achieve all this
with great elegance and precision, is a task calling for genius. Thus it is
not as if the basic stylistic difference between Archimedes and Khayyam
explains Khayyam’s treatise. Not anyone letting his introductions run
wild would write Khayyam’s Algebra.

But while this stylistic difference does not provide sufficient condi-
tions for the writing of the Algebra, it does provide, I argue, a central
necessary condition. For the Algebra to be written, one needed first
of all to have a culture where writing about mathematics was part and
parcel of the writing of mathemadtics.

Now, in a previous article (R. Netz 1998: 261-288) I have argued that
the medieval cultures of the codex provided just that. These cultures
were marked by the dominance of deuteronomic texts. (I.e. the domi-
nance of texts, such as commentary, that essentially depend upon pre-
vious texts). Thus, these are, in general, cultures where writing about
writing was part and parcel of writing itself. Little wonder, then, that
writing ebout mathematics was part and parcel of the writing of math-
ematics. I shall not repeat the arguments of R. Netz (1998) - they
are of course reinforced by the discussion offered here — but shall in-
stead sum up my main conclusion. I have argued that this dominance
of the deuteronomic accounts for features of medieval science for which
it is often criticized: its “scholasticism” or “pedantry”. The interest
of “scholastic”, “pedantic” authors, is to put works in textual order:
to add in all the details, to exhaust the field, to make all the relevant
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lem of finding lines satisfying a certain ratio is not related to other
problems of lines satisfying certain ratios, but is related to a different
‘kind” of problem, that of cutting a sphere. The Khayyamite context is,
as it were, horizontal: the problem of finding lines satisfying a certain
equality is not related to other problems from which it may arise, but is
instead related other problems of finding lines satisfying other equalities.
This difference in context fully determines the mathematical difference
between Archimedes and Khayyam. Khayyam differs from Archimedes
in his foregrounding of study of cases, and of equalities, both deriving
from his different type of context. Thus, merely by being set in different
types of context — with no deep difference in admissible mathematical
operations - the very nature of the proposition has been transformed,
and a geometrical problem has become a cubic equation.

The question arises, why does Khayyam’s context differ so markedly
from that of Archimedes. And, in a sense, we already have been given a
possible answer to this question. When surveying the overall structure
of Khayyam's treatise, we saw that the impulse to provide exhaustive
lists is closely related to a basic feature of the work, namely the conti-
nuity it displays between introduction and discussion. General, meta-
mathematical claims, are interspersed with more specific mathematical
claims at the object level, and the claims at the object level gain their
significance from the claims at the meta-mathematical level.

In technical terms, we can see this phenomenon, of foregrounding
of the general, in Khayyam’s treatment of the cubic equation. 1 have
noted how the specific geometric properties serve to show claims about
possibility or impossiblility of problems. In other words, the goal is
not at the object-level, to obtain geometric properties, but is, instead,
meta-mathematical - to show the possibility of impossibility of tasks
under varying conditions. In stylistic terms, the foregrounding of the
general is seen in the two conclusions Khayyam reaches in his treat-
ment: “This tangency or intersection was not grasped by Abu al-Jud,
the eminent geometer, so that he reached the conclusion that if BC is
bigger than AB, the problem would be impossible; and he was wrong
in this claim. And this kind is the one that baffled Mahani {(among the
six kinds). So that you shall know. ... So it has been proved that this
case has different cases, some may include impossibilities, and it has
been solved by the properties of two sections, both a parabola and a
hyperbola”. The mathematical discussion is governed by those two con-
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ing to given ratios is often an interesting task, just because proportions
are more complicated. In his same treatise, the Second Book on Sphere
and cylinder, Archimedes does mention, of course, tasks involving sim-
ple equalities. There is the task to find a plane equal to the surface of a
given sphere; or to find a sphere equal to a given cone (or cylinder), But
those problems are absolutely trivial. The first does not even get a dia-
gram, and is effectively dismissed as obvious from the facts known from
known results; the second gets a brief treatment in the first proposition
of the book, where the proof, once again, is a mere quick unpacking of
well-known results.?® The remainder of the treatise is then dedicated to
rea] problems, which are all defined by proportion or by the (equivalent)
relation of similarity.

Archimedes’ problem arises, as it were, in ‘real-life geometry’, and
its shape is determined by the demands of this ‘real-life geometry’.
Khayyam’s problem arises from its position in a list of problems — the
list deriving not from an external, geometrical investigation, but from
its own independent listing principle.

This comparison is crucial. There are of course classical Greek math-
ematical texts that list results: these are known as Elementary results.
But the essence of Greek elementary results — the very way in which
Greeks understood what “elementary” means®® - is that those results
serve in some other, advanced situations. Thus, Beok [[ of the Elements
— once considered as an example of “geometrical algebra” — is in fact
motivated by an interest in specific geometrical configurations, arising
in specific advanced problems. K. Saito has shown that the results of
Book [I are arranged not according to some principle internal to the
work itself, but by geometrical motivations that are external to it (K.
Saito 1985: 31-60). Thus, it is only natural that no attempt is made, in
Book 11, to obtain anything like an exhaustive list. The list is not in-
teresting for its properties as a list, but is a mere ‘repository’ of results,
useful vase by case.

The very same problem, we see, may be set in very different types
of context. The Archimedean context is, as it were, ‘vertical’: the prob-

(49 Archimedes does refer to a separate proof concerning the impossibility. This
proof is studied in R. Netz (1999), where I claim that, crucially, Archimedes avoids,
in that proof as well, any mention of cases. The proof simply unfolds for a single case.
Instead of making his arguments through cases, Archimedes develops two separate,
case-free lines of argument: one on the solution of the problem, the other on the
conditions for solubility of the problem.

(50 For these two problems, see Heiberg {1910-1915): pp. 170-174.



‘Omar Khayyam and Archimedes 255

4.2. Conclusion:

How does a Geometrical Problem become a Cubic Equa-
tion?

Going back, then, to the structural observation made in Section 3.1.
above concerning Khayyam'’s treatise, we can see how those structures
are reflected in the mathematical detail of the work. Most obviously,
the foregrounding of the study of cases is a feature of the work at all
levels — the overall treatise as well as the individual proof. Throughout,
Khayyam is motivated by the impulse to provide exhaustive lists. And it
is because this proof serves as a “case”, that it is analyzed according to
tits cases. Khayyam, as it were, never really set out to solve a problem
— this was not the issue. The issue, for him, was to catalogue a certain
problem according to the properties of its solution.

So much for the foregrounding of the study of cases over geomet-
rical properties. Inside geometrical properties, once again though in a
less obvious way, the foregrounding of equalities over proportions is de-
termined by the overall impulse to provide exhaustive lists. Equalities
lend themselves to an exhaustive survey; proportions do not. Equali-
ties have the simplest possible surface structure: a pair of symmetrical
positions. Proportions have four positions, symmetrical in some ways
and asymmetrical in others. Also, subtraction can always be eliminated
from equalities (instead of A=B-C, you can have A+C=B), but not from
proportions, lending a further dimension of complexity to proportions.
Those brute facts alone make it almost inevitable that, when motivated
by a desire to provide exhaustive lists of mathematical relations, equal-
ities will be foregrounded over proportions.

On the other hand, Archimedes is throughout motivated by imme-
diate geometrical tasks — in this case, to divide a sphere according to
a given ratio. This ultimate goal determines the nature of Archimedes’
treatment, just as Khayyam’s exhaustive list determines his own treat-
ment. Archimedes foregrounds the solution with its specific geometrical
property, because this geometrical property is the external function of
the proof; and he foregrounds proportions, because this external func-
tion is ultimately determined by a ratio. Truly, proportions are not
easy to catalogue, but Archimedes was never interested in cataloging his
problem. In his treatment, Archimedes’ problem seems to be a one-off,
totally unrelated to any other problem. Archimedes is simply interested
in obtaining interesting geometrical tasks, and obtaining results accord-
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problem is set out by Archimedes as that of finding a proportion, it is to
a proportion that his argument would lead; while Khayyam starts from
an equality and must return to it. As it were, in the different melodies
of their mathematical arguments, Archimedes has “proportion” as the
tonic — the note from which he started and to which his readers expect
him to return; while Khayyam has “equality” has the tonic.

In short, then, “proportion” gets foregrounded by Archimedes, “equal-
ity” by Khayyam. It is for this reason that Archimedes’ lines are so
clearly felt as “lines”: a ratio involving four lines and areas, and ulti-
mately dependent upon some geometrical similarity, is not easy to read
off as a quantitative statement, but makes more sense as qualitative
statement about a geometrical object. This is true even of algebraically-
seeming statements, e.g. what we might express by a:b=ak:bk. Con-
sider: “(18) and as the <line> I'Z to the <line> ZN, (taking ZH as
a common height) so is the <rectangle contained> by T'ZH to the
<rectangle contained> by NZH". Inside a complex grid of lines, and
inside a complex four-term expression, this claim becomes easier to read
as a statement about figures in space, and not just about manipulated
quantities. Khayyam's simpler equalities, on the other hand, are very
easy to interpret as simple results of calculation, so that, even though his
conception must have been thoroughly spatial, it becomes much more
natural to read those equalities in abstraction from space — as it were,
the equalities tend to become “equations”.

We may sum up the comparison like this, then. Archimedes fore-
grounds geometrical properties, backgrounds study of cases; Khayyam
foregrounds study of cases, backgrounds geometrical properties. Within
geometrical properties, Archimedes foregrounds porportions, backgrounds
equalities; Khayyam foregrounds equalities, backgrounds proportions.
Put schematically:

Archimedes: (Proportions>Equalities)>Cases,
Khayyam: Cases>(Equalities> Proportions).

It is this inverse ordering of foreground and background which makes
the proofs so different, which finally makes us feel that Khayyam's proof
“just couldn’t be Greek” — that it is, indeed, already Algebra. The
mathematical materials are all the same, but they are arranged in a com-
pletely new structure. It isat this structural level, then, that Khayyam’s
originality has to be understood.
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compare with 4 proportions.

Once again, the distinction between “foreground” and “background”
is more qualitative than quantitative. As noted above, Archimedes has
many geometrical constructions whose main function is to yield propor-
tions - in particular, the grid of parallel lines, with its ensuing similar
triangles. Khayyam has no need for such auxiliary structures and derives
his relations in a much more direct way, from the equalities inherent in
the conic sections; hence his much simpler figures.

Another example helps to bring forwards the sense of “foreground”. 1
mentioned above the “9 or 11 equalities” Archimedes has: this is because
some of his equalities are, as it were, self-effacing., Consider: “(9) it is:
as the <line> EA to the <line> AT, so the <area> A to some <area>
smaller than the <square> on BE, (10) that is, <smaller> than the
<square> on HK”. Now, the mathematical content of Step 10 is

(sq- BE)=(sq. HK),
But this is expressed through the “that is” operator, an after-thought
to Step 9, so that, syntactically, we are invited to read Step 10 as a
truncated way of stating
(EA:AT)::(<area> A :<area> smaller than sq. HK}.

Thus, the equality is truly a background to the main statements, which
are all about proportion. Put simply: for Archimedes, ecualities are
ways of getting at proportions while, for Khayyam, proportions are ways
of getting at equalities. As in the issue of cases versus geometrical prop-
erties, the main question is which serves which. We may compare, for
instance, the ways through which the two geometrical proofs reach their
goals:

Archimedes: “(36) while the <rectangle contained> by LZN is
equal to the <square> on X=, (37) that is to the <square> on BO, (38)
through the parabola. (39) Therefore as the <line> OA to the <line>
AT, so the area A to the <square> on BO”.

Khayyam: “(28) So the ratio of the square of GC, the first, to the
square of BC, the second, as the ratio of BC, the second, to GA, the
fourth. (29) So the cube of BC - which is equal to the given number - is
equal to the solid whose base is the square of GC, and its height GA”.

Archimedes develops some equalities only to translate them into
proportions; Khayyam develops some proportions - only to translate
them ito equalities. The reason for this Is, in fact, obvious: the way in
which the goal is obtained is determined by the goal itself. Since the
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In his article “Steps towards the Idea of Function: a Comparison be-
tween Eastern and Western Science of the Middle Ages”, M. Schramm
commented on Khayyam’s failure to study the point at which the parabola
and the hyperbola are tangents. This point is exactly one third the way
above the given line — thus, an interesting property, which we would ex-
pect Khayyam to notice. Archimedes devotes his entire study of limits
of solubility to this property (R. Nets 1999: 1-47). As M. Schramm put
it

It is strange to find that ‘Umar al-Khayydmi does not mention

this condition, already known to Archimedes. He likes to leave

something for his readers to do. (M. Schramm 7: 7)
In fact Khayyim’s silence on this point — as well as Archimedes’ elo-
quence - are easy to explain. Since Khayyam’s study of cases is logi-
cally prior to his study of geometrical properties, he is not interested in
the geometrical properties of the point that define cases, as long as the
points can be stated in terms of his exhaustive lists. For Archimedes’
on the other hand, the cases are reached through an investigation of
the geometrical properties of the configuration, hence he very naturally
states the conditions for the tangencies of the sections. The different
priorities determine, quite naturally, which questions you pursue and
which questions you choose to leave aside.

This then is one major difference between the two proofs, having to
with their overall aims and interests. Another major difference has to
do with the technical tools used to achieve those aims, especially ratios
and proportions.

Once again, this difference may be expressed in simple quantitative
terms: Archimedes’ solution has many more proportion statements than
Khayyam’s. Of Archimedes’ 40 Steps, 16 assert proportions {40%); of
Khayyam’s 35 Steps, only 4 assert proportions (11%). Instead of pro-
portions, Khayyam more often asserts equalities, and he asserts 8 equal-
ities in his argument. Of course, equalities are much less central to
Khayyam’s overall argument than proportions are to Archimedes, but
this is because many of Khayyam’s claims have to do directly with possi-
bility or impossibility under various inequalities. Both proportions and
equalities are backgrounded in Khayyam’s treatment — relative to the
study of cases — while they are both foregrounded in Archimedes’ treat-
ment. What we now see is that, among the two, Archimedes foregrounds
proportions, while Khayyam foregrounds equalities. Archimedes’ 16
Proportions compare with 9 or 11 equalities: Khayyam'’s 8 equalities
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as well - now well into the middle of the proof - is not the solution itself,
but its division into cases. This is the heart of Khayyam’s proposition
- the moment where he stops to make historical and bibliographical
statements, comparing his achievement with previous achievements. It
is precisely such division into cases of which he prides himeself: “This
tangency or intersection was not grasped by Abu al-Jud, the eminent
geometer, so that he reached the conclusion that if BC is bigger than
AB, the problem would be impossible; and he was wrong in this claim”.
Now, the next Step in Khayyam’s proof, 21, is another brief claim con-
cerning cases; and then Steps 21-32 provide the geometrical argument
concerning the solution, which is now seen as dependent upon the main
claims. What Khayyam’s solution at Steps 21-32 does, given its con-
text, is not so much to solve a problem, but to show that a solution
is possible given a certain condition. Finally, Steps 33-35 wrap up the
argument by suggesting how the same solubility may be seen for the
other configurations.

Khayyam’s proof, then, is not so much a solution to a problem, as a
study of the cases arising out of the problem, arranged according to two
exhaustive lists of equalities or inequalities:

(Content of Step 1):  H <,> AC

(Content of Step 11):  BC <,> AB.
The first part of the proof, Steps 1-10, studies the cases of possibility and
impossibility arising from the first exhaustive list. The second part of
the proof, Steps 11-35, studies the cases of possibility and impossibility
arising from the second exhaustive list. The main geometrical property -
Steps 21-32 - serves. in context, merely as an element inside this second
study.

Khayyam looks at the problem, distinguishes its cases and studies
them as items in an exhaustive list of equalities and inequalities; ge-
ometrical comments being made to the extent that they contribute to
this study. Archimedes looks at the problem and develops its geomet-
rical properties, realizing that these may also fall into different cases.
This difference is one of the major reason why Khayyam’s problem feels
more “algebraical” — why his lines tend to appear like sheer quantities.
Since he plunges directly into cases and develops them before develop-
ing his geometrical study, he is bound to single out simple equalities
or inequalities, which do not call for any geometrical imagination — the
simple exhaustive lists of steps 1 and 11.
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begin with, it if is greater,*” the problem may not be constructed, as has
been proved in the analysis; (3) and if it is equal, the point E produces
the problem. (4) For, the solids being equal, (5) the bases are reciprocal
to the heights, (6) and it is: as the <line> EA to the <line> AI', so the
<area> A to the <square> on BE”. For Archimedes, we see, the study
of cases is simply a way of getting the main solution off the ground. In
one case, the problem is insoluble, so this can be put aside, no further
comment being made;*® in another case, the solution is effected in a
simple, direct way; so, having said that, the proof can unfold, without
any further mention of cases being made.

Khayyam’s solution is of course totally different. In mere quanti-
tative terms, Khayyam'’s preliminary study of cases has 10 steps out
a total of 35 Steps of the proof (29%), as against Archimedes’ 6 out
of 40 (15%). Indeed, the qualitative gap is wider, since steps 3-6 in
Archimedes’ proof are not primarily a study of cases, but simply part of
the solution: the division into cases serves not as an end, in this case,
but as means for the solution. Thus we are left with step 1 alone, which
is a mere claim, not an argument, so that, in short, Archimedes offers no
argument whose end is the study of cases. Khayyam, on the other hand,
not only dedicates ten Steps for this preliminary investigation: he goes
on showing the same approach in the solution itself. We immediately
notice that he offers not one, but three separate diagrams, corresponding
to three possible geometrical configuration. And once again, these are
not mere tools for obtaining the solution. Having made the necessary
constructions and preliminary statements, Khayyam reveals the main
interest of this study by division: “(18) So if the two sections meet, by a
tangency at another point or by an intersection, then the perpendicular
drawn from this <point of meeting> will have to fall between the points
A, B; (19) and the problem is possible; (20) otherwise it is impossible”.
In other words, the configurations are simply another way of yielding
cases of possibility and impossibility, so that the goal of this discussion

(47 Any comparison of Khayyam’s language with that of Greek geometry opens
up an important guestion: which form of Greek geometry was Khayyam acquainted
with? What did he think was Greek geometry “written like”? It may well be that
the translations from Greek mathematics with which Khayyim was acquianted al-
ready contained some original linguistic features. Once again, I ignore this historical
question, and concentrate on the direct comparison between the two languages —
Archimedes' and Khayyam’s.

(48 Te. (<area> A, on the <line> ATA} > (<square> on BE, on the <line> EA).
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nate lines in the section AIL; (25) so its <=IG> square shall be equal
to the product of AG by BC”. Thus, the difference between “product”
and “rectangle” is in a sense no more than that of notation: in terms of
admissible operations, Khayyam’s terminology carries no consequences.
Most tellingly, at the moment where Khayyam’s treatment is most rem-
iniscent of Al-Jabr wa I-Mugabala - when a quantity is added to two
sides of an equation - there is nothing algebraic to his argument. “(29)
So the cube of BC - which is equal to the given number ~ is equal to
the solid whose base is the square of GC, and its height GA. (q) And
we add the cube of GC as common; (30) so the cube of GC with the
given number is equal to the solid whose base is the square of GC, and
its height AC”. The operation through which we obtain the equality

(solid whose base is the square of GC, and its height GA}+(cube of GC)=
(solid whose base is the square of GC, and its height AC).
Has nothing algebraic about it, and is instead classical Greek cut-and-
paste derivation, strongly based on unpacking information from the di-
agram. Apart from their strange initial formulation, then, Khayyam’s
proofs could be read, without perplexity, by any Greek mathematician.

But could they have been written by any Greek mathematician?
While Khayyam uses the idiom of Greek mathematics, he also uses it in
his own way, meaningfully different from, say, Archimedes’. At a math-
ematical, technical level, Khayyam’s proof is clearly distinct from that
of Archimedes. Let us try to analyze this sense of difference.

Once again, to have a sense of the difference, we should also notice
the similarities. Both proofs, after all, are based upon an intersection of
a parabola and a hyperbola, and both offer a study of cases, connecting
it with the conditions of solubility. To some extent, such similarities may
have historical explanations. (Khayyam is likely to have been familiar
with some version of Archimedes’ solution). There are also technical
mathematical facts that account for the similarity: the problem is af-
ter all the same; cubic equations are indeed equivalent to proportions
involving lines and squares, and there are only so many curves that sat-
isfy such proportions. Thus, in a sense, history and mathematics both
determine a certain convergence between Archimedes and Khayyam.

Which makes their divergence all the more apparent. This divergence
has two aspects: the different roles the study of cases, and the different
roles of ratios and equations.

For the study of cases, consider Archimedes’ discussion: “(2) To
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number of cases, names are allowed to switch: “(23) so its <=IG>
square shall be equal to the product of AG by BC. (26) So the ratio
of BC to IG is equal to the ratio of IG to GA. (27) So the four lines
are proportional: the ratio of GC to CB as the ratio of CB to IG, and
as the ratio of IG to GA. (28) So the ratio of the square of GC, the
first, to the square of BC, the second, as the ratio of BC, the second,
to GA, the fourth”. In the course of these four steps — the key to the
main geometrical property — AG has switched into GA, while BC has
switched into CB and back again into BC. Thus, the reference of those
two-lettered objects can not be purely symbolic - it is precisely their
identity as symbols which such a permutation destroys. The identity of
these objects is clearly given by the diagram where, indeed, it makes no
difference whether you read them, as it were, from left to right or from
right to left.

In short, we see that Khayyam opens the possibility of considering
his objects symbolically, as elements manipulated by the rules of calcu-
lation; yet essentially conceives of them as components in a geometrical
configuration. This is seen at the most elementary level - the use of let-
ters; but, as always, we encounter the same structural forces at all levels
of analysis. For, after all, the entire treatise is determined by Khayyam’s
open-ended list of degrees — on into square-squares, square-cubes, and
beyond; and his explicit decision, to limit himself to the four basic de-
grees alone, Most importantly, the same duality, with a preference to the
geometrical is shown in the kinds of mathematical statements and oper-
ations allowed. In this problem, we see Khayyam making a few claims
whose geometrical significance is not apparent: “(a) We suppose AC as
the quantity of the squares; (b) we construct a cube equal to the given
number”. What is the meaning of a line being “supposed as a quantity”?
Or of a cube “being equal to a number”? Thus, an equivalence between
geometrical and more abstract objects is being suggested. However,
those kinds of non-geometrical claims are limited to the stage of setting-
out, where the general problem is set in geometrical terms. Following
this setting-out, the argument proceeds strictly according to geometrical
manipulations. None of the derivations made by Khayyam would have
been inadmissible for Archimedes. Truly, Khayyam speaks of “product”
where Archimedes speaks of “rectangle”. However, Khayyam obtains his
products through precisely the same geometrical techniques Archimedes
could use for obtaining his rectangles: “{(24) And IG is among the ordi-
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the expression often used by Khayyam, “the square of AB”, is truly in-
determinate: it can refer both to the square (in terms of calculation) of
the magnitude AB, or to the square (in the geometrical sense) produced
from the line AB. It is indeed interesting to note that when Khayyam
wishes to refer in non-ambiguous terms to a geometrical square, he does
so by a different mode of naming of squares: “(f) and a square DC
shall be completed in the three diagrams”. By referring to the square
through two opposite vertices, the reference can no longer be to ‘square’
in the terms of calculation, and must be to ‘square’ in terms of geom-
etry. On the other hand, in some other expressions, the language of
calculation seems dominant, as in, e.g. “(17) ... the product of AB by
BC”. Archimedes would probably have “the <rectangle contained> by
the <lines> AB, BC”, but the absence of the formula “the <line> AB”
makes it much more natural to refer to the product not as a geometrical,
two dimensional object, but as a result of calculating with two symbolic
objects, AB, BC.

And yet, while opening up these radically new ways of reading his
text, it remains clear that Khayyam himself does not intend his text
to be read in this way. There are many indications Khayyam conceives
of his lines as geometrical configurations, and not as more generalized
magnitudes represented symbolically.

Most simply, he operates upon them, even at the symbolic level,
according to their geometric configuration. In keeping with Greek prac-
tices, Khayyam allows lines to be represented by the diagram, in what-
ever is the most natural way. Consider the line H: since it does not form
part of the continuous geometrical configuration, it does not intersect
with any other line and is thus not distinguished by any of its points.
Thus, it becomes natural to refer to it as a single unit (and not, as is
done for other lines, through the points at its two limits). The result
is that most, but not all lines in Khayyam’s solution are two-lettered.
This heterogeneous way of naming lines makes it somewhat less natural
to see the expressions “H”, “AC” as mere symbols. As mere symbols,
they are homogenous; their heterogeneity is a function of the geometrical
configuration.

The same grounding of the symbol in the diagram is seen in another
phenomenon of Khayyam’s treatise: the permutability of names. Again,
as is also true of Greek mathematical practices, once a name is attached
to an object it is generally kept the way it is. However, in a significant
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points on the line. The Greek words eutheia gramme, “straight line”, are
dropped. (In my translation, I insert back the word “line”, alone, inside
pointed brackets). However, these words are understood: the expression
is merely a way of referring to specific lines in a specific figure. While
my translation is no doubt irritating in its plethora of pointed brackets,
those pointed brackets do serve a function in reminding us how much
the Greek reader fills in, and how much it is felt that the text refers
throughout to geometrical objects.

Khayyam’s text is different, and this particular formulaic form is
dropped altogether. This is indeed natural in a translated context: the
easiest way to render the Greek he AB in another language is simply
by AB, if only because the expression he AB contains nothing to trans-
late besides definite article and Greek letters. Further, Arabic does not
possess a declension of the definite article: but without the feature ‘femi-
nine’ spelled out on the definite article, it loses even the minimal meaning
it had in the Greek. Finally, even phonologically, the expression “the
AB” is problematic in Arabic, in which the definite article joins with
the noun it governs to form a single word. The hypothetical expression
*al-AB would be particularly strange, as the definite article would have
to combine with a peculiar, extra-linguistic object — the letters of the
diagram. Such linguistic speculations aside, it is clear that Khayyam’s
text differs from Archimedes in its avoidance of this particular formula
- with which go many other, more complex formulae. To put it simply,
my translation of Khayyam contains far fewer pointed brackets than my
translation of Archimedes.

This could have a consequence for the way in which geometric ob-
jects seem to be understood in Khayyam’s text. Of course Khayyam
occasionally does refer explicitly to lines as “lines” — as indeed Greek
mathematicians also do. But Khayyam would drop this explicit refer-
ence in the contexts where a Greek mathematician would use only the
abbreviated form ke AB. Thus, the text would seem to speak not about
lines as such but rather about objects represented by diagrammatic let-
ters. In an expression such as, e.g., “(9) Then, if H is bigger than
AC...”, the “bigger” relationship holds, as far as the text is concerned,
not between lines as such, but between such objects as are designated
by diagrammatic letters. Since Khayyam does belong to a world where
such letters can be used in calculation, and not only in geometry, his
expressions now allow for a systematic ambiguity. Thus, for instance,
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<=AC> is equal to the given quantity (of squares).*® (32) And this is
the goal.*®

(33) Analogously with the two remaining cases, (34) except that the
third has to give rise to two cubes, (35) since each perpendicular cuts
from CA the side of the cube, (36) as has been proved.

So it has been proved that this case has different cases, some may
include impossibilities, and it has been solved by the properties of two
sections, both a parabola and a hyperbola.

4. The Originality of the Algebra
4.1. Reading Khayyam in light of Archimedes

We have now seen the two separate treatments, by Archimedes and
by Khayyam, and it is time to consider Khayyam’s treatment in the
light of Archimedes’. One is at times struck by the degree of continuity
between the two treatments, at times struck by Khayyam’s originality.
By delineating the lines of difference and similarity, then, we may obtain
a finer understanding of the sense in which Khayyam’s work was an
‘Algebra’.t®

I start with a detail of Khayyam’s exposition that is very typical of
this duality — opening up non-geometrical possibilities, while manifesting
a sustained geometrical conception of the problem. I refer to Khayyam’s
system for naming lines.

To begin with, notice how my translation of Archimedes is peppered
by the phrase “the <line> AB”. This is a very minimal Greek expression,
in transliteration:

he AB

The Greek definite article, in its singular feminine form, followed by two
Greek letters {or, less frequently, three letters), for letters standing at

height GC. Add it to the solid whose base is the square of GC, and its height GA,
and you have a new solid, whose base is the square of GC, and its height (GC+GA).
GCH+GA is the same as AC, hence “the solid whose base is the square of GC, and its
height AC”, mentioned by Khayyam.

(44 AC was set down as the quantity of squares, in the very first Step a.

(45 We have produced a line - GC - whose property is that: its cube, together
with a given number, equals a given number of its squares.

(46 As always, my comments about Khayyam sometimes apply to other Arabic
mathematicians as well, and sometimes apply to Khayyim alone, and I do not try to
distinguish between the two.
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at another point or by an intersection, then the perpendicular drawn
from this <point of meeting> will have to fall between the points A, B;
(19) and the problem is possible; (20) otherwise it is impossible.

This tangency or intersection was not grasped by Abu al-Jud, the
eminent geometer, so that he reached the conclusion that if BC is bigger
than AB, the problem would be impossible; and he was wrong in this
claim.

And this kind is the one that baffled Mahani (among the six kinds).?®
So that you shall know,

(21) And in the third diagram, the point D shall be interior to the
parabola,® so the sections cut each other at two points.*

(n) And, in all, we draw, from the point of meeting, a perpendicular
on AB, (o) and let it be, in the second diagram, IG; (p) similarly, <we
draw> from it <=D> another perpendicular, on CE, namely IK. (22)
So the rectangle IC is equal to the rectangle DC (Conics I1 2000: 3), (23)
so the ratio of GC to BC shall be as the ratio of BC to IG (Les Eléments
VI 16). (24) And IG is among the ordinate lines in the section AIL;*
(25) so its <=IG> square shall be equal to the product of AG by BC.
(26) So the ratio of BC to IG is equal to the ratio of IG (Les Eléments VI
16). (27) So the four lines are proportional: the ratio of GC to CB as
the ratio of CB to IG, and as the ratio of IG to GA. (28) So the ratio of
the square of GC, the first, to the square of BC, the second, as the ratio
of BC, the second, to GA, the fourth. (29) So the cube of BC — which
is equal to the given number - is equal to the solid whose base is the
square of GC, and its height GA. (q) And we add the cube of GC as
common: {30) so the cube of GC with the given number is equal to the
solid whose base is the square of GC, and its height AC,*? (31} which

that the parabola passes: a converse of Conics [ (p. 13).

{39 It is not altogether clear which “six kinds” are referred to: they could be either
the six kinds to which this kind belongs in Khayyam’s treatise, or some six kinds
Mahant was baffled by. The reference to Mahani, at any rate, is a follow-up of the
brief mention in the introduction, where it was also mentioned that MahanT studied
the Archimedean Problem; this is as much as Khayyam says explicitly to connect this
Problern with Archimedes.

{40 The same reasoning as used in Step 17.

(41 The hyperbola now needs to “escape” from inside the parabola, in ‘both’ di-
rections. )

(42 I.e., it is one of the lines defined in such a way that the square on them is equal
to the rectangle contained by: (1) the line they cut from the axis, and (2) the orthia
(Conics 12000: 13),

(43 The cube of GC is, in fact, the solid whose base is the square of GC, and its
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(b) So we cut BC, equal to H, from AC. (11) So the line BC shall be
either equal to AB, or bigger than it, or smaller. (¢) So let it be, in the
first diagram, equal to it; (d) and in the second, bigger than it; (e) and
in the third, smaller than it. (f) And a square DC shall be completed
in the three diagrams, (g) and we produce, at the point D, a hyperbola,
asymptotic to AC, CE, (h) which is DG in the first diagram, (i) DI in
the second and the third. (j) and we produce a parabola, whose vertex
is the point A, and whose axis is AC, and its orthia is BC;3* (k) which
<parabola> is Al in the first diagram, (1} and AL in the second, (m)and
AK in the third. {12) And the sections shall be known in position.?® (12)
So in the first <diagram>, the parabola passes at the point D, (13) since
the square of DB is equal to the product of AB by BC:3 (14) so D shall
be on the perimeter of the parabola; (15) and it <=the parabola> will
meet <the hyperbola> at another point -~ which you can grasp, with the
least thought.3” (16) And in the second, the point D shall be outside the
perimeter of the parabola, (17) since the square of DB is bigger than the
product of AB by BC.3® (18) So if the two sections meet, by a tangency

(34 Orthia is a formulaic Greek expression, literally meaning something like “the
rightish <line>”, transformed in Arabic into the equally formulaic expression “the
right side”, and which I finally transliterate back into the original Greek. It refers
to the line, defining a parabola so that — applying modern terms to, e.g., diagram 1}
of this proposition — every perpendicular from the parabola on the axis, such as DB,
satisfies DB2=(Orthia)*(BA) or - as this construction stipulates - DB?=(BC)*(BA).

(35 The claim is that a hyperbola is determined by a point through which is passes,
together with its two asymptotes (Conics f12000: 4), while a parabola is determined
by its vertex, axis and orthio (Conics f2000: 52).

(36 The square of DB is the square EDBC and, by the definition of diagram 1,
AB=BC and so AB*BC=BD?; by a converse of Conics I (p. 11}, the parabola must
therefore pass at the point D.

{37 Once again, Khayyam addresses the reader with an “exercise”, this time curi-
ously explicit. The truth of the claim is visually compelling, but ancient and medieval
readers would probably prefer not to rely on the diagram for exploring the relations
of conic sections, as these were drawn (intentionally} falsely, by arcs of circles. | have
given the matter a least thought, and then some more thought, and finally I think as
follows: if the two sections cut each other at D, the claim is indeed obvious (for the
hyperbola will have to ‘escape’ from inside the parabola, so as to avoid cutting the
asymptote}. The two sections cannot be tangent at D, since this would imply that,
with the tangent produced, it should be cut into equal segments at the touching point
(Conics 1 2000: 3), which iu turn would imply that CB, that is DB, is equal to the
segment from B to the cutting-point of the tangent and of the line BA produced; but
DB is already equal to BA and an impossibility arises.

(38’ And it is at the point on the line DB, where the square is equal to the product,
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fig. 5. From R. Rashed & B. Vahabzadeh 1999: 176-178.

(a) We suppose AC as the quantity of the squares; (b) we construct
a cube equal to the given number, and let its side be H.?® (1) And the
side H will have to be either equal to the line AC, or greater, than it, or
smaller. (2) So, if it is equal to it, the problem is impossible, (3) since
the side of the required cube will have to be equal to H, or smaller, or
greater. (4) So, if it is its equal, the product of AC by its <=the required
cube’s side> square is equal to the cube of H; (5) and the number shall
be equal to a quantity of squares, and there will be no need to add the
cube.? (6) And if the required side is smaller than it <= than H>, the
product of AC by its <=the required cube’s side> square 1s smaller than
the given number, (7) so the quantity of squares will be smaller than
the given number, even without the addition.® (8) And if the side is
greater than H, its cube is greater than the product of AC by its <=the
required cube’s side> square, even without the addition, to it, of the
number.3! 32 (9) Then, if H is bigger than AC, the impossibility in the
three cases shall be even greater.®® (10) So it shall be necessary that H
will be smaller than AC, and otherwise the problem is impossible,

{28 This point is rather confusing: the problem sets out a cube that, together with
a number, equals a (multiple of 2) square — the cube and the square being related in
that they share the same side. Now, Khayyaim immediately moves on to construct
a {urther, auxiliary cube — not to be confused with the one set out by the problem
itself — which is equal to the given rumber. Its side is H so that one may say that the
given number equals (in modern symbolism) "

(29 Ie., the original equality is “cube with number equals quantity of squares”, but
we have “number equals number of squares”, i.e., in effect, no cube - so obviously the
problem is impossible (in our terms, it may be said that Khayyam does not consider
zero to be a solution to the problem).

(30 Le., the original equality is “the cube with numbers equals quantity of squares”,
but we already have “number greater than quantity of squares”, and adding in a
cube to the number will not make it any smaller! {In our terms, it may be said that
Khayyim does not consider negative numbers as solutions to the problem).

{31 Le., the original equality is “the cube with number equals quantity of squares”,
but we already have “the cube is greater than quantity of squares”, and the addition
of a number can only make this worse. (In our terms, it may be said that Khayyam
does not consider negative numbers as possible parameters).

(32 Steps 3-8 are all gaverned by step 2, and together show the impossibility of the
case H=AC.

{33 Khayyam intends that we verify by going through the previcus three cases,
which the reader may now do. This Step 9 shows the impossibility of the case H>AC
g0, together with Steps 2-8, the ensemble of Steps 2-9 shows that the only case which
may at all be possible is H<AC, as asserted in the following step.
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termed kinds’: A cube and a number equal a square (fig. 5).27
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fig. 4. From R. Rashed & B. Vahabzadeh 1999: 125-129.

The translation has no claims for style or precision. It is brought
here so that we can discuss the text and, to make the comparison with
Archimedes easier to follow, 1 adopt the same conventions adopted in
my translation of Archimedes. The fifth kind of the ‘six remaining three-
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overall argument, surveying the domain of algebra.

To sum up, then, we saw three structural features of Khayyam’s Al-
gebra. The first was an inter-penetration of the introduction, and the
treatise proper: the treatise was a direct continuation of the introduc-
tion, since the treatise was simultaneously, in algebra, and about algebra.
The second was the strongly articulate, systematic nature of the trea-
tise: it constantly arranged itself in various divisions and lists. Finally,
we saw how the two features are connected through the principle of ex-
haustive lists. The interests of the treatise is in arranging claims — and
‘objects - into systematic orders, so those separate claims become, simul-
taneously, components in a large-scale claim about the entire domajn of
algebra.

Having made those general observations on the treatise, it is time to
see its part devoted to the Archimedean problem.

3.2. The Archimedean Problem Solved by Khayyam

I offer here a translation, based on R. Rashed’s and B. Vahabzadeh’s
important new edition and translation of Khayyam’s work, of a problem
in Khayyam’s algebra that has a certain affinity with the Archimedean
problem. It is, as its title mentions, the fifth problem in a group of six
problems of three terms; modern editors sometimes number the problems
in this treatise, and then it becomes “problem 17”. There are altogether
25 problems, so this problem occupies an advanced position in the book

(fig. 4).
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In an interesting complication, this example has a two-tiered exhaus-
tive classification (within a certain possibility, further sub-possibilities
are surveyed). Exhaustive lists, that is, can become complex, many-
dimensional systems.

It should be noted that this interest in argument through exhaus-
tive lists is remarkable, given the subject matter taken by Khayyam. In
the terms of Greek mathematics, Khayyam deals almost exclusively with
problems: that is, he defines situations, and sets himself the task of find-
ing lines satisfying the definitions. Now, argument through exhaustive
lists is often used in Greek mathematics — but mainly in two contexts.
One is that of Reductio arguments, which work through the exhaustive
principle that P or not-P, showing that P is impossible and thus deriving
not-P. Another - essentially a development of Reductio arguments — is
what is called (for other reasons) ‘the Method of exhaustion’. There,
it is argued that a certain object is either greater, smaller or equal to
another one; the “greater” and “smaller” options are ruled out and the
“equal” is thus proved. Both Reductio arguments, and the Method of
exhaustion, are useful, for obvius reasons, not for problems, that achieve
a task, but for theorems, that state a truth. Finally, a very special work
within the corpus of ancient Greek mathematics (but one in which Arab
commentators had a special interest) does work through the principle of
classification: this is Elements Book X.?® This book classifies the kinds
of relations of incommensurability. Once again, however, classification is
used in the context of theorems. (Furthermore, the classificatory object
of the work remains mostly implicit). It is a peculiarity of Khayyam’s
argumentative style, then, to-rely so heavily on exhaustive lists in a
treatise dedicated to problems.

But then again, exhaustive lists is what this treatise is about:
Khayyam’s main claim is not that he proved this or that result, solved
this or that problem, but that he had encompassed an entire domain.
The goal of the treatise is totality: thus to claim that an object has a
certain position in the system is not some tool used for listing ob jects,
a mere signpost. The signaling of positions in a system is a tool used
in the exhaustive survey of the entire system. Each separate part of the
treatise — each case within a problem, each kind of equality, each group
of kinds — participates simultaneously at two levels. At one levels, it
makes a specific claim, separate to it; at another level, it functions in an

" (26 Forits reliance on the principle of classification, see B, Vitrac (1998): pp. 51-63.
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So-the work is characterized throughout by an impulse to divide,
to articulate, to put into systematic structure. To complete our obser-
vations, a final feature of the treatise must be added: the impulse is,
often, not merely to articulate domains, but fully to exhaust such do-
mains. Once again, it is instructive to take a non-mathematical exam-
ple, namely the historical excursus. In surveying the domain of previous
works in his field, Khayyam proceeds by an exhaustive division into
“ancients” and “moderns”, and then reasons as follows for the ancients:

We have no treatises from them concerning it: perhaps, after
having studied and locking for it, they failed to grasp it; or their
theories did not lead them to study it; or their treatises were not
translated into our language. (R. Rashed 1999: 117)

What we see here is Khayyam’s urge to obtain truth by encom-
passing a domain of possibilities. This immediately becomes a defining
feature of the work. The subject-matter, algebra, is exhaustively de-
fined, in many aspects. The kinds of quantities, as we have noted, are
enumerated, in an exhaustive list which ~ purely for exhaustion’s sake -
includes time in addition to the other mathematical quantities. (It is
in this context that reference is made to the Categories, a work that
Khayyam must have understood as an exercise in exhaustive systemati-
zation). Then the various degrees are spelled out, from the root upwards
(and, much later in the work, form the root downward, dealing with
‘parts’). Then Khayyam stops short the infinite expansion of degrees
(to square-square, square-cube, cube-cube and beyond) by insisting on
the geometrical meaningfulness of quantities: “since there is no other
dimension [beyond cubes], the square-square and what comes beyond it
are not among the magnitudes”. Thus, the exhaustive list of kinds of
magnitudes helps to delimit an exhaustive set of kinds of degrees (num-
ber, root, square, cube), and this immediately leads on to the heart of
the treatise, which is the exhaustive list of kinds of equations defined by
those four degrees.

Thus at the most global level the treatise operates through exhaustive
listing. But the same principle is operative in many individual proofs.
This is the essence of Khayyam’s interest in “cases” in proofs, which
derive from some exhaustive list of a set of possibilities: “And these two
<conic> sections will either meet or not meet”(R. Rashed 1999: 167).
Having made such an assertion, Khayyam then moves on to study each
of the possibilities. Many proofs of the treatise are structured by such ex-
haustive lists, and we shall see an example in the following subsection.
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of the treatise - how its different parts relate to each other — is always an
interest of Khayyam. Thus different problems are related, in what may
be considered, anachronistically, a “reduction”: one problem is shown to
be equivalent to another. Thus Khayyam states explicitly that a certain
species of problems is all equivalent to another, and then proves this
equivalence, each time using particular examples, sometimes to substi-
tute the general argument, sometimes to corroborate it (R. Rashed 1999:
147-153).

The word “example” is one kind of local signpost used to articulate
the work; other words are used as well, such as “by numbers” and “by
geometry” which we have seen already, as well as, simply, “proof”: that
is, here and there, following a general statement, Khayyam would in-
troduce his mathematical argument by the single word “proof”. (By
my counting, this minimal title occurs 10 times in the treatise, though
I may have missed some occurrences). This is correlated with several
expressions similar in meaning to QED: “and that’s the goal”, “and
that’s what we wanted to prove”, etc., I count 24 occurrences of this
expression.

By far the most important signpost is, of course, the word “kind”,
followed by an ordinal, and often introduced by a connector. So, for
instance, a problem is introduced by the words “And the second kind of
this” (R. Rashed 1999: 141).24 This constant repetition of the word “kind”
is the main structural feature of the work, and may well have been so
even at the visual level. While of course no autograph survives of the
work, at least one manuscript (BN Arabe 2458) systematically sets out
the expressions containing the word “kind” in bigger characters: this has
a marked visual impact.?® (Note that this kind of visual articulation is
common in many Arabic scientific manuscripts, though sometimes using
colour instead of size). Finally, in some parts of the work, a similar effect
of articulation is obtained by the figures, which are (as is the standard
elsewhere) positioned near or at the end of their respective problems,
thus enhancing visually the verbal articulation of the work.

(24 Notice how the system works as a whole: the word “kind” is the local signpost,
signaling the start of a new problem; the word “and” positions the kind inside a
sequential system; the word “second” provides the place in the sequential system; the
word “of this” hints at the system being referred to. The whole expression, finally, is
an unpacking of an entry from the original set of tables.

{25 This manuscript apparently is, according to R. Rashed (1999): pp. 109-113,
the copy closest to the autograph, though of course this does not guarantee that this
particular feature is authorial.
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The impulse to divide and to list goes, however, well beyond those
basic grids. The work is articulated, throughout, by comparisons and
parallel parts. In some simple cases, having offered one proof, Khayyam
often moves on to offer another one, alternative to it. Once again, this
is often explicitly marked accorrding to a preconceived grid. The sixth
kind, for instance, is defined, and then immediately we have the words
“proof by numbers”, followed by a very brief proof; and then “by ge-
ometry”, and another brief proof follows (R. Rashed 1999: 135). In some
other, more complex cases, the nature of the problem makes it natu-
ral to distinguish, not kinds of proofs, but kinds of situations arising
within a single proof. In the next subsection, for instance, we shall see
a case where Khayyam distinguishes three possible configurations that
may arise from a single geometrical situation. Typically, the distinction
is made explicit, and is even marked out in the layout of the work, as
the three figures are labeled “first”, “second” and “third”.

Thus different proofs, and different cases within proofs, are put side
by side. Further, Khayyam puts side by side proofs, and examples.
Consider again fig. 2, with the table setting out ‘degrees’ and their cor-
responding ‘parts’. We may now notice that, besides the named degrees
and parts, the table also lists numbers: those numbers are examples of
such degrees and parts (taking 2 as the basic root). Such articulations of
general proof, and of particular numerical examples, are often repeated
through the work. In some cases, Khayyam uses a particular example
instead of a general proof. For example, instead of solving generally the
case of “a square equal a number of roots”, Khayyam simply offers a
special case, “a square equals five times its root”, allowing the general
solution (the root is equal to the number of roots mentioned in the prob-
lem) to be apparent from the particular case (R. Rashed 1999: 133). In
some other problems, general statement exists alongside a particular ex-
ample, as in the immediately following problem, “<a number of> things
equal a cube”. Khayyam explains explicitly that this general problem
is essentially like the problem “a number equals a square”, This is ex-
plained as follows: “example: four roots are equal to a cube; it is like
has been said: four, a number, is equal to a square”. (R. Rashed 1999
135).

Notice how, in the text quoted above, the word “example” is used
explicitly - a sort of local signpost. The articulation of the work is never
implicit. Indeed, as the same example also shows, the structural features
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fig. 3. From R. Rashed & B. Vahabzadeh 1999: 219.

There are many further divisions and lists made throughout the book,
in the course of the mathematical argument itself. Several distinctions
occupy Khayyam explicitly. Most important is the distinction between
problems that do not require conic sections from those that do. This,
indeed, is the main division of the book (R. Rashed 1999: 153): following
a list of problems and solutions which do not require conic sections,
Khayyam makes a break in the argument. ‘After introducing these kinds
could be proved from the properties of the circle, that is from the book
of Euclid, let us discuss now the kinds that can not be proved except
with the properties of the <conic> sections’. (Note, incidentally, how
mathematical and bibliographical distinctions coincide). The break is
very noticeable in the overall structure of the book as, for once, Khayyam
deviates from the structure set out by the division of equalities, and
introduces further auxiliary lemmas on solid figures (R. Rashed 1999: 155-
161). Another crucial distinction for Khayyam is that between problems
that are always soluble, and those that are not: those distinctions do not
divide the book neatly, as the circle/conic sections division does. Thus,
Khayyam makes those distinctions case by case: following each kind of
problems, he notes whether or not they are always soluble. Thus, e.g.,
at the end of ‘the fifth kind of the remaining six kinds of three terms’
Khayyam notes that ‘this kind has different cases, some of which may
be impossible’, while at the end of the next kind he notes that ‘this kind
has no different cases, and none of its problem is impossible’ (R. Rashed
1999: 181-183). In other words, the treatise sets out to impose three
separate grids on the universe of algebraic problems: the grid defined
by number of terms and their relations (the one set out at the original
table); the grid defined by the mathematical/bibliographic distinction
of circle from comnic sections; and the grid defined by the presence or
absence of impossible cases. We see that one of the explicit interests of
Khayyam is to investigate the pattern of this triple superposition.
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in systems of all kind. Khayyam is constantly interested in articulating
domains: dividing them, and organizing them according to some over-
arching principles. This indeed is the very start of the work, with its
species-genus arrangement: (A) wisdom, in it (B) ‘mathematical’, in it
(C) *Al-Jabr wa I-Mugabale’, in it (D) ‘kinds’ (of a more difficult na-
ture). This Prophyry’s tree is but the first of many lists and divisions
made in the treatise. In history, people are either ‘ancients’ or ‘later’
(R. Rashed 1999: 117). In the metaphysics of algebra, its objects are ‘the
line, the plane, the solid, and time’ (R. Rashed 1999: 121) - tellingly,
Khayyam immediately refers to Aristotle’s Categories (as well as to a
Categories — based comment in the Physics). Khayyam lists the ‘de-
grees’ (R. Rashed 1999: 121): thing, square, cube, square-square, etc.;
towards the end of the treatise, he reverts to the same list, now to list
it together with its correlate, list of ‘parts’ (‘part of a square’ is what
we would call ‘lover square’: if the square is 4, part of the square is ).
The one-dimensional list of degrees thus becomes a two-dimensional grid
and, in acknowledgement of that, Khayyam explains that he decided, for
clarity’s sake, to set out the ‘parts’, together with the original degrees,
in a table (R. Rashed 1999: 219) (fig. 2). Now, similar tables form what
may be considered the heart of the treatise. Near the beginning of the
work, following other divisions concerning Algebra, Khayyam sets out
the various kinds of equalities (R. Rashed 1999: 125-129) (fig. 3). These
form, once again, a many-tiered genus-species structure: equalities are
either ‘simple’ (binomials) or ‘complex’ (polynomial). ‘Complex’ equal-
ities are either with three, or with four terms (note that Khayyam does
not deal with degrees beyond the cube: this results from his deeply geo-
metrical conception of mathematics, to which we shall return in the next
section). For several of the species obtained in this manner, Khayyam
distinguished further species (e.g. between equations that were treated
by earlier mathematicians, and those that were not), so that finally each
infima species contains no more than a few equalities (six at most). The
bulk of the treatise is an unpacking of this preliminary list: a set of
solutions of those equalities, always following this genus-species struc-
ture. Overarching division is thus, quite simply, what the book is about.
Tellingly, even the names of the species and genera derive from the list,
as they are called, e.g., ‘<the kind of> the six kinds’ etc.
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without a previous mastery of this background.?

Khayyam’s introduction does not stop there, and now he goes on
to discuss the nature of Algebraical equations, from metaphysical and
mathematical points of view, and this survey leads on, very naturally,
to a survey of the types of equations studied in this field. This survey of
types of equations, finally, constitutes what may be considered the trea-
tise proper. The language gradually becomes now that of Greek-Arabic
geometry and algebra, with figures lettered by the Arabic alphabet, and
the language of theorems and proofs. Notice, however, that the early
types of equations dealt with are very simple, they do not call for detailed
mathematical discussion. Thus, the continuity between “introduction”
and “treatise” is further stressed: the text, even in its more mathemati-
cal part, starts out as relatively “discursive”, ordinary scientific Arabic,
and only gradually it becomes more specifically mathematical. Finally,
even the later part of the work — which contains many complex mathe-
matical propositions, naturally in the mathematical mode of exposition
- more general, discursive remarks are frequently made. For example,
Khayyam systematically describes the type of equations dealt with, in
more general terms (e.g. whether or not it has cases). Also, when such
comments suggest themselves, he notes the relation between his works
and earlier works. We shall see discursive remarks of this kind in the
text quoted in the following subsection; though it should be noted that
this text is one of the least discursive ones in the treatise.

Briefly, then, Khayyam’s treatise is characterized by a seamless tran-
sition from general, contextual comments, to the mathematical results
themselves. Indeed, the context — setting out the results as belonging
to a certain system — is not some marginal comment, but is the key to
the work, which is all about setting out cases. Thus the introduction,
in a rea: sense, never ends. It is typical that the word “introduction” is
supplied by the modern editor (R. Rashed 1999: 117.4): it is not in the
original, because the original is not neatly divided between “introduc-
tion” and “text”. The work, as it were, is not just Algebra, but also
“An Introduction to Algebra”.

The central role of the introductory material is related, as we see,
to another important feature of this treatise, namely its strong interest

(23 The bibliographic coordinates of the work keep being provided later on in the
treatise: quite frequently, Khayyim refers explicitly to propositions from the three
bocks mentioned, naming book and proposition as the authority for a certain claim:
I count at least 19 such references in the work.
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So: (A) wisdom, in it (B) ‘mathematical’, in it (C) ‘Al-Jabr wa [-
Mugabala’, in it (D) ‘kinds’ which are especially difficult: it is this,
fourth layer of systematic analysis to which Khayyam’s treatise is dedi-
cated. As can be seen, the systematic position immediately gives rise to
a mathematical, or even bibliographic position (the kinds ‘require pre-
liminary propositions’) as well as a historical position (the solution was
‘inaccessible to most researchers’). It is to this historical context that
Khayyam now proceeds, nothing first the absence of ancient (i.e. Greek)
extant works, then the limited success of later (i.e. Arabic) works. This
historical notice is of special interest, as Khayyam mentions explicitly
the Archimedean Problem: Mahani tried to solve it without success,
Khazin then solved it. This is about as much as the moderns achieved,
according to Khayyam, until his own time. Thus, the historical con-
text leads smoothly to the autobiographical context: Khayyam tells us
about his lifelong desire to study this field, the obstacles put on his way
— not least by some obnoxious people. Finally, he tells us of his studies
with Abu Tahir ‘Abd or-Rahman ibn ‘Alak (for whom he has very warm
words) and of his ultimate success in producing this work: the historical
route, from Archimedes, through Abu ‘Abdollah Mahani, Abu Ja‘afar
Khazin and Abu Tahir, ends with Khayyam himself.??

With this personal note, it would seem that the introductory material
was over; but Khayyam presses on with a more detailed mathematical-
philosophical positioning of the field. Al-Jabr wa {-Mugdbala is defined;
the quantities it deals with are enumerated and analyzed, from both
metaphysical and mathematical points of view (typically, two previous
authors are mentioned in this context: Aristotle and Euclid). Khayyam
then specifies further the scope of the specific field he deals with: as we
have been led to expect from the very start, this is done by reference to
the preliminary propositions required, i.e. here arrives the bibliographic
context. This is a set of three works: Euclid’s Elementsand Data, as well
as Apollonius’ Conics. Readers are warned not to attempt the treatise

Rashed’s, his is the more precise rendering of the Arabic.

(22 As will be noted below, introductory material keeps being provided later in the
work, including historical context: this is done in particnlar in an excursus added at
the end of the work, R. Rashed (1999): 227 fl. Further information, particularly on
Ibn Haitham, is mentioned towards the end of the work proper, R. Rashed (1999):
pPp. 223-225; while many other references to “previous”, unnamed mathematicians are
mede throughout the work, e.g. R. Rashed (1999): p. 197. Finally, in an interesting
complication, Khayyam refers to a treatise by himself, in R. Rashed (1999): p. 129.
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according to a given ratio. The problem is then transformed, and then
solved, always following the principle of transforming geometrical ratios,
until simple ratios between lines are obtained. At the moment where the
ratios, while linear, become too complex to handle, Archimedes moves
into a higher plane of generality, ignoring some specific properties of the
problem at hand: but the purpose of this transition into generality is
merely to arrive at ratios that are more simply defined. To sum up:
both the motivation for the problem and the tools used for its solution,
are geometrical, Let us now compare this with Khayyam.

3. Khayyam’s Problem

3.1. Some Structural Observations on Khayyam’s Algebra

In what follows I offer a number of observations on Khayyam’s treatise.
I explain immediately: those observations are not intended to exhaust
the structure of the treatise, but merely to point to certain features of it
I find relevant for the following discussion. Further, I do not claim those
features are specific to Khayyam himself. Some are typical of Arabic and
Medieval mathematics in general, some are more specific to Khayyam,
and I do not try to distinguish between the two.

A basic feature of the treatise is the central role played in it by in-
troductory statements. Reflections upon the treatise, and the treatise
itself, form a continuous whole. Khayyam’s Algebra is marked by a
strong, explicit setting in a historical, bibliographic, philosophical, in-
deed even an autobiographical context. This setting is not a marginal,
“colouring” addition to the work, but a fundamental constituent, and
indeed “setting” and “work” are hard to tell apart.

Let us look at the introduction, then.?® Khayyam begins his treatise
by putting his subject-matter in its philosophical, ‘systematic’ position.

One of the scientific principles required in that part of wisdom
known as ‘mathematical’ is the art of Al-Jabr wa I-Mugdbala ...
and in it, there are kinds in which one requires kinds of preliminary
propositions which are very hard, and whose solution inaccessible
to most researchers.?!

{20 For the following analysis of the introductiorn, cp. R. Rashed (1899): pp. 117-
125.

{21 All the translations offered here are based on a combination of H.J.J. Winter
and W. Arafat (1950), with R. Rashed {1999). [ sometimes deviate from both, mainly
to accommodate the text to my terminology used in the translations from the Greek.
Obviously, readers should assume that, whenever my translation conflicts with R.
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on his formulation of the problem, then, it could have produced the
following three-dimensional equality:
(parallelepiped cont. by sq. AX, line XZ) equals
(parallelepiped cont. by sq. BA, line Z0).

Now we can see that the bottom side is known — both square and line.
Thus we are asked simply to cut a line so that the square on one segment,
together with the other segment, produce a parallelepiped of a given
volume. The seemingly intractable ratios of spheres, their segments and
their cones, have been reduced to a truly elegant task.

Let us now translate the problem even further, now into modern
terms, so as to have some neutral point from which, finally, to compare
Archimedes with Khayyam. So, the problem is that of cutting a line (call
it a) so that the square on one of its segments (call this z?) “multiplied”
by the other segment (a — z) equals a certain given magnitude (call it
b):

r*a—-z)=b or zla—z3=b or z®+b==zla.

This final re-formulation of the problem, as we shall see below, is
highly reminiscent of a problem that arises, and is solved, in Khayyam’s
Algebra. We shall immediately move on to make some observations on
that treatise: but not before noting how radically different this algebraic
formulation has become from Archimedes’ statement of the problem.

The tools used by Archimedes in his synthesis are primarily parallel
lines — with their implied similarities and equalities, based on elemen-
tary properties of plane geometry. Those similarities allow, essentially,
transformations upon ratios. The same is true for conic sections. This
may be less obvious in this synthetic presentation, but — concentrating
on the proof for the limits of solubility to the problem - I have argued
in a precious article (R. Nets 1999) that, for Archimedes, a conic section
essentially defines a ratio involving both areas and lines. It thus may
sometimes allow the transformation of ratios between squares into ratios
between lines. So we see a need, to manipulate and simplify geometrical
ratios, a need which determines the use of parallel lines and of conic
sections. Finally, the same impulse is shown in the very approach to the
problem of cutting the sphere: the sphere is transformed into cones, so
that their heights will form the lines along which ratios are measured.

So the Archimedean Problem arises directly from a well-defined ge-
ometrical task, of an immediate, “tangible” interest — to cut the sphere
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pass through O.!¢ (m) Let it pass, and let it be as the <line> TOZ. (31)
Now, since it is: as the <line> OA to the <line> ATl so the <line>
OB to the <line> BX (Les Eléments I 1998:.29, 32 & VI 4), (32) that
is the <line> T'Z to the <line> ZX (Les Eléments VI 1998: 2), (33) and
as the <line> T'Z to the <line> ZX (taking ZN as a common height)
the <rectangle contained> by I'ZN to the <rectangle contained> by
LZN (Les Eléments VI 1998: 1), (34) therefore as the <line> OA to the
<line> AT, too, so the <rectangle contained> by I'ZN to the <rectangle
contained> by ZZN. (35) And the <rectangle contained> by I'ZN is
equal to the area A,!7 (36) while the <rectangle contained> by TZN is
equal to the <square> on IZ=, (37) that is to the <square> on BO,'
(38) through the parabola.'® (39) Therefore as the <line> OA to the
<line> AT, so the area A to the <square> on BO. (40) Therefore the
point O has been taken, producing the problem.

2.3. A wider Perspective on Archimedes’ Problem

It can be seen that in his solution Archimedes sometimes uses a language
different from that of ratios alone: this could have been used, in prin-
ciple, to simplify the problem further. The following then is no longer
Archimedes’ own formulation of the problem, but still does represent
his mathematical tools. This simplification would be important when
comparing Archimedes to Khayyam.

Recall the ratio obtained by Archimedes - the starting-point for the
problem:

(sq. onBA) :-(sq. on AX):XZ7Z:70

Now, there being four lines in proportion, A:B::C:D, we deduce an
equality between two rectangles:

(rectangle contained by A, D) equals (rectangle contained by B, C).
While the extension of this result to parallelepipeds has a less compelling
intuitive character — and is not proved in the Elements. We just saw
Archimedes taking it for granted in some moves of his solution. If applied

(16 Step 30 is better put as: “The diagonal of the parallelogram IIZZT passes
through O”, which can then be proved as a converse of Eléments I (p. 43).
{17 Step h. The original Greek is literally: “To the <rectangle contained> by I'ZN
is equal the area A” (with the same syntactic structure, inverted by my translation,
. in the next Step).
(18 18. Steps a, e, k, |, Les Eléments I (p. 34).
(19 A reference to Conics I (p. 11) - the “symptom” of the parabola.
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to the <square> on HM; (16) and alternately, as the <square> on I'Z
to the <rectangle contained> by I'ZN, so the <rectangle contained> by
I'ZH to the <square> on HM (Les Eléments V 1998: 16). (17) But as the
<square> on I'Z to the <rectangle contained> by I'ZN, the <line> I'Z
to the <line> ZN (Les Eléments VI 1998: 1), (18) and as the <line> I'Z
to the <line> ZN, (taking ZH as a common height) so is the <rectangle
contained> by I'ZH to the <rectangle contained> by NZH (Les Eléments
VI 1998: 1); (19) therefore also, as the <rectangle contained> by I'ZH
to the <rectangle contained> by NZH, so the <rectangle contained>
by I'ZH to the <square> on HM; (20) therefore the <square> on HM
is equal to the <rectangle contained> by HZN (Les Eléments V 1998:
7). (21) Therefore if we draw, through Z, a parabola around the axis
ZH, so that the lines drawn down <to the axis> are, in square, the
<rectangle applied> along the <line> ZN - it will pass through M.® (i)
Let it be drawn, and let it be the <parabola> MZZ. (22) And since the
<area> OA is equal to the <area> AZ,!® (23) that is the <rectangle
contained> by OKA to the <rectangle contained> by ABZ' (24) if
we draw, through B, an hyperbola around the asymptotes ©T,T'Z, it
will pass through K'? (through the converse of the 8th theorem of <the
second book of> Apollonius’ Conic Elemnenis).?®> (j) Let it be drawn,
and let it be as the <hyperbola> BK, cutting the parabola at =, (k) and
let a perpendicular be drawn from = on AB, <namely> ZOII, (1) and
let the <line> PZY be drawn through = parallel to the <line> AB. (25)
Now, since BEK is an hyperbola (26) and ©T',I'Z are asymptotes,'* (27)
and the <lines> PZII'® are drawn parallel to the <lines> ABZ, (28) the
<rectangle contained> by PZII is equal to the <rectangle contained> by
ABZ (Conics IT 2000: 12); (29) so that the <area> PO, too, <is equal>
to the <area> OZ. (30) Therefore if a line is joined from I' to X, it will

{9 The converse of Conics I (p. 11).

(10 Based on Fléments I(p. 43).

(11 As a result of Step a (the angle at A right), all the parallelograms are in fact
rectangles.

(12 Converse of Conics II (p. 12).

(13 This note was not put in by Archimedes, but by the later commentator Euto-
cius; interestingly — and typically — Eutocius’ reference assumes a text of the Conics
different {rom ours. For Eutocius’ practices, particularly in regard to the Conics, see
M. Decorps — Foulquier (2000).

(14 Steps 25-26: based on Step .

(15 An interesting way of saying “the <lines> P=, Z117,
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(a) Let the <line> AE be taken, a third part of the <line> AB; (1)
therefore the <area> A, on the <line> AT? is either greater than the
<square> on BE, on the <line> EA, or equal, or smaller.

(2) To begin with, it if is greater, the problem may not be con-
structed, as has been proved in the analysis;* (3) and if it is equal, the
point E produces the problem. (4) For, the solids being equal, (5) the
bases are reciprocal to the heights (Les Eléments XI 1998: 34), (6) and
it is: as the <line> EA to the <line> AT, so the <area> A to the
<square> on BE.

(7) And if the <area> A, on the <line> AL is smaller than the
<square> on BE, on the <line> EA, it shall be constructed like this:
(a) Let the <line> AT be set out in right <angles> to the <line> AB,
(b) and let the <line> I'Z be drawn through I' parallel to the <line> AD,
(c) and let the <line> BZ be drawn through B parallel to the <line>
AT, (d) and let it meet the <line> T'E (<itself> being produced) at H,
(e) and let the parallelogram Z© be completed, (f) and let the <line>
KEA be drawn through E parallel to the <line> ZH. (8) Now, since the
<area> A, on the <line> AT is smaller than the <square> on BE, on
the <line> EA, (9) it is: as the <line> EA to the <line> AT, so the
<area> A to some <area> smaller than the <square> on BES (10)
that is, <smaller> than the <square> on HK.® (g) So let it be: as the
<line> EA to the <line> AT, so the <area> A to the <square> on
HM, (h) and let the <rectangle contained> by T'ZN be equal to the
<area> A.7 (11) Now since it is: as the <line> EA to the <line> Al
so the <area> A, that is the <rectangle contained> by I'ZN, (12) to the
<square> on HM, (13) but as the <line> EA to the <line> AT, so the
<line> TZ to the <line> ZH.® (14) and as the <line> T'Z to the <line>
ZH, so the <square> on I'Z to the <rectangle contained> by I'ZH (Les
Fiéments VI 1998 1), (15) therefore also as the <square> on I'Z to the
<rectangle contained> by I'ZH, so the <rectangle contained> by I'ZN

(3 The expression “area, on line” means “the parallelepiped with the area as base,
and the line as height”. See discussion of this expression in R. Netz {1999).

(4 The reference is to a later part of the same argument, showing the limits of
solubility of the problem - translated and discussed in R. Netz (1999).

(5 The closest foundation in Euclid is Les Eléments VI (p. 16), proving that if
a*b=c*d, then @ : d :: ¢ : b {for a, b,c and d being lines).

(6 Steps b, e, {, Les Eléments | (p. 34).

{7 Steps g and h define the points M, N respectively, by defining areas which
depend upon those points.

(8 Stepsb,e, [, Les Eléments I(p.p. 29, 32) & VI(p. 4).
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As it were, the point O serves two masters: once, it defines AQ, thus
serving the ratio AO:AT; once again it defines OB, serving the ratio
(area A):(square on OB). Can one be the servant of two masters? Yes,
if the service is identical: the two ratios must be the same. It is as
such — as a complex ratio — that Archimedes understands and solves the
problem.

The following section 2.2. is a translation of the synthetic part of
Archimedes’ solution. Following the translation, I offer a few remarks
in section 2.3., before moving on to Khayyam.

2.2. The Archimedean Problem Solved by Archimedes?
& L\
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fig. 2. From J.L. Heiberg 1910-1915: vol, III, 139.

And it will be constructed like this: let the given line be AB, and some
other given <line> AT, and the given area A, and let it be required to
cut the <line> AB, so that it is: as one segment to the given <line>
AB, so the given <area> A to the <square> on the remaining segment.

(2 The following is a translation of J.L. Heiberg (1910-1915): pp. 136, 14-140,
20. The argument that this text is indeed by Archimedes is not straightforward. It
derives, in fact, from Eutocius’ commentary to Archimedes second Book on Sphere
and Cylinder (6'® century AD). Eutocius thought this text was by Archimedes, as it
was written in Doric, in atchaic terminclogy: probably he was right. For an exposition
of the special textual difficulties surrounding this text, as well as an explanation of
the conventions of translation adopted here, see R. Netz (1999) with the exception
that {for reasons which will become apparent in section 4., below) I do not abbreviate
the Greek expression “the <line> AB” into “AB”, as I did in that translation.
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be given by the terms of the problem: it is the ratio of the sum of the
cones (i.e. the sum of the segments of sphere, i.e. simply the sphere) to
the smaller cone, i.e. the smaller segment: so if the problem is to cut
the sphere in the ratio 2:1, the ratio PA : AX is 3:1. BZ, again, is simply
the radius, so the point O is fully defined by the terms of the problem.

What happens now to the cutting-point itself, X? Our goal now is
to manipulate our ratios so that we define the point X with the various
lines we have defined by the terms of the problem. Archimedes reaches
such a ratio: :

(sq. onBA) : (sq. onAX) :: X7 : ZO.

In other words, the terms of the problem define a line AZ, and our task
is to find a cutting-point on it, X. This cutting-point has a complex
defining property.

The cutting-point cuts the line into two smaller lines, AX, XZ. Now,
we have The Defining Square — the one on BA; and The Defining Line -
70; both are fully determined by the terms of the problem. The Defining
Property is this: The Defining Square has to the square on one of the
smaller lines (AX) the same ratio which the other smaller line (XZ) has
to The Defining Line.

The problem becomes truly irritating in its details if we continue to
think about the specific characteristics of The Defining Area and The
Defining Line, in terms of the problem. For instance, The Defining Area
happens to be the square on two-thirds the given line AZ; while the
definition of ZO is truly complex. It is much easier, then, simply to
leave those details aside and to look at the problem afresh, without the
specific characteristics: we can always get them in later when we wish
to. So the problem can be re-stated as follows:

Let us assume we are given a line and an area — any line, any square.
Let us re-name them, now, as the line AB and the area A. Now the
problem is, given another line, which we call Al', to find a point on AB
— say O - that defines two segments of AB, namely AQ, OB. Those two
segments should now satisfy:

AQ : AT :: (areaA) : (square onOB).

This is the Archimedean Problem.
Is the problem as stated now soluble? This is not yet evident.
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the sphere share a common base — the plane at which they are divided -
and certain solid and curvilinear figures are relatively easy to handle
once their base is made equal: these are cones. The ratio of cones of
equal base is the same as the ratio of their height — in other words is
it a simple linear ratio. Therefore, we shall try to convert the segments
of sphere into cones. This is relatively easy to obtain, following results
Archimedes had proved in his first Book on Sphere and Cylinder. Hence
the figure of this Proposition 4 (fig. 1): ABT', AAT are the two segments
of sphere; APT, AAT are the cones equal to them, respectively. The
question “where to cut the sphere” is the question of the ratio between
the diameter (BA) and one of the cut lines (e.g. AX). In the simplest
case of equality, this ratio is 2:1, but in all other cases it still eludes us;
but, with the cones, we have a way forwards. A

—

fig. 1. From J.L. Heiberg 1910-1915: vol, I, 188.

Now, to get the cones, a relatively complex ratio defines the lines
XP, XA in terms of the position of the point X. For instance, the length
PX is defined by (transforming into a modern notation).

(KA + AX) :: PX : XB.

Clearly, all the lines except for PX are given by the point X itself, so
that, in general, the cones are weli-defined and with them the ratio of
the two segments of sphere. Thus a single manipulation by ratios, albeit
a complex one, transforms a ratio defined by solid, curvilinear figures,
into a ratio defined by lines alone.

Archimedes introduces now two auxiliary lines (that ultimately sim-
plify the ratios). The line BZ is defined in a simple way, KB=BZ. As for
the line ZO, it is defined in a more complex way: PA: AX : BZ : 70.
Notice however that while this ratio is somewhat complex, it is still
“manageable”, since the ratio PA : AX is essentially the ratio we would
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problem, as I shall show below, is essentially geometrical. In Khayyam’s
Algebra, however, it becomes much more algebraic: in fact, it can now
be validly seen as “a cubic equation”. The question then is that of the
title: how does a geometrical problem become a cubic equation? It is
with this narrow question that this article deals.!

I sketch here a possible approach to this question. In section 2., 1
describe the starting-point in the Archimedean Problem, showing how
it arises, and offering a translation of the synthetic part of its solution.
In section 3., I make some general observations on structural features of
Khayyam'’s treatise, and then concentrate on the Archimedean Problem
as it is formulated and solved by Khayyam. In section 4., I look at
Khayyam’s treatment in light of Archimedes’, and suggest a possible
account for the difference between Archimedes and Khayyam.

2. The Archimedean Problem
2.1. The Archimedean Problem Obtained

In his second Book on Sphere and Cylinder, Archimedes offers a series
of problems concerning spheres. The goal is to produce spheres, or
segments of spheres, defined by given geometrical equalities or ratios.
In Proposition 4, the problem is that of cutting a sphere so that its
segments stand to each other in a given ratio. For instance, we know
that to divide a sphere into two equal parts, the solution is to divide
it along the middle, or, in other words, at the middle of the diameter.
But what if want to have, say, one segment twice the other? Cutting it
at two-thirds the diameter is clearly not the answer, and the question is
seen to be non-trivial, for two separate reasons: it involves solid figures,
and it involves curvilinear figures — both difficult to handle by simple
manipulations of lines.

However, a dirction forwards suggests itself. The two segments of

(1 Notice that this article is restricted to a comparative methodology. I put side
by side two solutions, by Archimedes and Khayyam, and make comparative remarks.
I ignore the historical question of the way in which the Archimedean Problem was
transmitted and gradually transformed, in late antiquity and in the middle ages. For
all those questions, see R. Netz (1999), and, for some further bibliographic references,
R. Rashed (1999). To clarify, however: Khayyam had many Arabic antecedents, some
of whom he even mentions explicitly. Indeed, among the historical issues ignored here
is a brief mention by Khayyam himself to the same problem in the earlier treatise On
the Division of the Quadrant, This article merely sets two marks on the road from
problems to equations - a road I hope to map it in detail in the future.
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1. Introduction

Works such as Archimedes’ Sphere and Cylinder and ‘Omar Khayyam’s
Algebra are among the greatest achievements of humankind. Arguably,
they belong to the sphere of “genius”, not so much to the sphere of
history: the overpowering individualities of Archimedes and of Khayyam
seem to defy any historical labeling. Still, it is by mighty logs, not by
specks of dust, that we learn of the flow of rivers. And the direction of
the river of mathematics, from Archimedes to Khayyam and onwards,
seems to be well known: starting already in antiquity itself and reaching
early modern Europe, Hellenistic Greek geometric science is transformed
into what we call algebra.

What was this process like? Using our two “logs”, this question can
be put in more precies terms. Khayyam’s Algebra can be said to have
its origins in a certain problem put forward and solved by Archimedes,
in an appendix to his second Book on the Sphere and the Cylinder. This

(+ Twish to thank the editor of this issue of Farhang, Dr. Jafar Aghayani Chavoshi,
for insisting that I should write on Khayyam. 1 also thank him, as well as Prof.
Bernard Vitrac, for many helpful comments (of course, the responsibility for the
views expressed here rests with me). This article was written during a stay in Paris,
as a scholar in the Maison des Sciences de I’Homme, for whose generosity I am deeply
grateful.

Farhang, vol. 14, no. 39-40, pp. 221-259



