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Abstract 

The human machine interface research in the light of modern fast computers and advanced 

sensors is taking new heights. The classification and processing of neural activity in the brain 

accessed by Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), 

functional Magnetic Resonance Imaging (fMRI), Electrocorticography (ECoG), EEG 

Electroencephalogram (EEG) etc., are peeling off new paradigms for pattern recognition in 

human brain-machine interaction applications. In the present paper, an effective novel scheme 

based upon a synergetic approach employing the Genetic Algorithm (GA), Support Vector 

Machine and Wavelet packet transform for motor imagery classification and optimal Channel 

selection is proposed. GA with SVM acting as the objective function is employed for 

simultaneous selection of features and channels optimally. The binary population of GA is 

uniquely represented in three-dimensional structure and a new cross-over operator for GA are 

introduced. The new modified cross-over operator is proposed for the modified three-

dimensional population. The ‘data set I’ of ‘BCI Competition IV’ is taken for evaluation of 

the efficacy of the proposed scheme. For subject ‘a’ accuracy is 88.9 6.9 with 10 channels, for 

subject ‘b’ accuracy is 79.20±5.36with 11 channels, for subject ‘f’ accuracy is 90.50±3.56 

with 13 channels, and for subject ‘g’ accuracy is 92.23±3.21with 12 channels. The proposed 

scheme outperforms in terms of classification accuracy for subjects ‘a, b, f, g’ and in terms of 

number of channels for subject ‘a’ and that for subject ‘b’ is same as reported earlier in 

literature. Therefore, proposed scheme contributes a significant development in terms of new 

three-dimensional representation of binary population for GA as well as significant new 
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modification to the GA operators. The efficacy of the scheme is evident from the results 

presented in the paper for dataset under consideration. 

Keywords: Motor Imagery (M.I.); Genetic Algorithm (GA); Three Dimensional Population; 

Support Vector Machine (SVM). 
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Introduction 

The human brain is the most evolved organ of most intelligent and evolved species (human) 

on earth. The brain is the origin of attention, actions, memory, cognition, perception, 

emotions, beliefs, telepathy and intuitions in the human body. The fact that the brain utilizes 

electrical signals for its functioning, was discovered by R. Canton (Caton, 1875) in 1875. 

Thereafter, Hans Berger (Berger, 1929), for the first time, measured the electrical activity of 

the human brain and named it as Electroencephalogram (EEG). 

The present research work reports new applications of intelligent techniques for signal 

processing of EEG signals from human subjects. Corresponding to every thought, intention or 

action, there is a place in the brain where electrical activity along with chemical reactions 

happens and the action is initiated by communication through neurons.   The electrical activity 

of neurons in the human brain can be monitored by available modern techniques such as 

Magnetic Resonance Imaging (MRI), Electroencephalograms (EEG), Positron Emission 

Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electrocorticography 

(ECoG), etc. EEG being a versatile measurement of neural electrical activity in the human 

brain, so it can be used to study complex dynamics of the brain, paving the way to a diagnosis 

of various brain disorders and brain-machine interface applications. 

The technological means devised for communication between the brain and a computing 

device is named as Brain-Computer Interface (BCI). The research on BCI began as early as in 

the 1970s (Vidal, 1973, 1977), but due to lack of fast computing machines, research in this 

area didn't progress for a long time. During the 1990s (Pfurtscheller & Lopes, 1999), research 

in this area picked some momentum and with the turning of the millennium, the transistor 

density in microprocessors increasing with Moore's Law gave fervent speed to computing 

machines and thereby fueled the research in BCIs. In BCI, the brain signals corresponding to 

certain activity are accessed through some technological means like EEG and manipulated 

and decoded by computational methods which can give the command to some actuator, so 
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that the action in the thought of the subject can be translated into mechanical action by the use 

of machines having intelligence. These interfacing systems can be extremely helpful to the 

patients severally impaired due to some accident or neuro-motor diseases, whose sensory-

motor system is not working and who are not able to perform normal motor actions initiated 

in their brains. The present paper proposes an optimal feature and channel selection scheme 

for motor imagery classification corresponding to limb movements in the human body. A 

synergetic approach employing Support Vector Machine (SVM), Wavelet Packet Transform 

(WPT), and Genetic Algorithms (GAs) are employed for the optimization problem addressed 

in this paper.  In the proposed scheme, the wavelet packet transform is used for the selection 

of sensory-motor frequency band and feature extraction. The number of channels and features 

are selected simultaneously by GA. SVM acts as part of the objective function for GA. The 

dataset-1 of BCI competition-IV (Publicly available), is utilized for the present research work. 

This paper presents a unique feature extraction mechanism using wavelet packet transform 

and approximate entropy. The EEG signals are decomposed at the 8th level using WPD, the 

coefficients are extracted and approximate entropy is computed at selected nodes of the 8th 

level decomposition to give feature vector. The nodes are selected corresponding to the 

sensory-motor frequency band. This feature extraction is carried out for all electrodes 

(channels). The simultaneous selection of relevant channels along with the relevant feature 

from the selected channels is carried out by using Genetic Algorithms. The three-dimensional 

structure of the population of GA is the first time proposed in the present paper. The cross-

over operator is also modified for the kind of population under consideration. The results 

obtained Motor imagery classification outperform the previously reported results in the 

literature (Park et al., 2013). 

Literature Review   

The genesis of BCI lies in the roots of the discovery of electrical currents in the brain (Caton, 

1875) and measurements of these currents (Berger, 1929) in human subjects. The 

groundbreaking research work of Wilder Graves Penfield (Eccles & Feindel, 1978) for the 

discovery of the motor cortex was a seed for modern BCI systems. Vidal J.J in 1973, coined 

the term "Brain-Computer Interface" (Vidal, 1973), and further proposed classification of 

evoked responses/ event-related potentials in human EEG (Vidal, 1977). The publication by 

Vidal (Vidal, 1977) is the known first peer-reviewed publication in the field of BCI. Vidal is 

known as the inventor of BCI.  For a long time, due to the unavailability of fast computing 

processors, the research in BCI did not have any progress. With the turning of millennium and 

increasing speeds of computers, the research in BCI saw a spur in reporting of publications.  

The Event-Related Potential (ERP) being phase-locked and Event-Related Synchronization 

(ERS)/Desynchronization (ERD) being non- phase-locked, are different responses of the 

human nervous system. The results of time and space quantification of ERD/ERS, for several 

movement experiments, is presented in (Pfurtscheller & Lopes, 1999). 
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 Fast and reliable classification of EEG patterns is necessary for the development of BCI 

systems. The hand movement imagination in EEG recordings is prevalent from contra- & 

ipsilateral central areas of the brain. The estimation of spatial filters by common spatial 

pattern along with weighted importance of electrodes for classification used as special feature 

resulted in classification accuracies for hand movement imagery for three subjects as 90.8%, 

92.7%, and 99.7% (Ramoser et al., 2000).  

The EEG in primary sensorimotor areas is affected by motor imagery in a similar way as in 

the real movement of the concerned organ of the body. The band power or adaptive 

autoregressive parameters extracted used as features and input to a linear discrimination 

analysis and neural networks-based classification system resulted in effective control of a 

hand prosthesis by a tetraplegic patient (Pfurtscheller & Neuper, 2001). An exhaustive review 

of BCI and motor imagery classification is presented in (Wolpaw et al., 2002).  Different 

functional states of the brain are depicted in terms of short-term spectral transformations 

structure of EEG in (Fingelkurts et al., 2003). The training of a subject for reliably and 

voluntarily producing changes in his/her EEG as per different motor imagery tasks is a critical 

issue for the success of BCI systems (Curran & Stokes, 2003).   

The past few decades have seen an upsurge in developing new techniques for man-to-

machine communication. The EEG or ECoG signals recorded from the subject and fed to an 

intelligent system can prove to be an effective orthosis or word processing software of some 

effective mechanism for patients suffering from Locked-in Syndrome (LIS). Six datasets 

including training (labeled) and test (unlabeled) sets in the documented format are provided 

by Four laboratories engaged in EEG-based BCI across the globe (Blankertz et al., 2004).  

An algorithm using Fisher discriminate analysis and Common spatial subspace 

decomposition with features obtained from Bereitschafts potential and event-related 

desynchronization gave 84% classification accuracy using the "BCI Competition 2003" test 

set (Y. Wang et al., 2004).   

BBCI - the Berlin Brain-Computer Interface presented by Blankertz Benjamin et al. 

(Blankertz et al., 2006), deals with the translation of brain signals from movements/ intentions 

into control commands by using an advanced machine learning algorithm. This technique is 

different from the conventional techniques in terms of training time, which extends up to 50-

100 hrs., for conventional techniques. The subject training requirement for BBCI is minimal. 

The new Hex-o-Spell text entry system speeds communication up to 6–8 letters per minute, is 

presented in (Blankertz et al., 2006). The computational challenges for non-invasive brain-

computer interfaces are addressed in (Popescu et al., 2008). A review of signal preprocessing 

and classification for mental state monitoring and EEG-based BCI applications has been 

presented (Klaus-Robert Muller, Tangermann et al., 2008).  
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The spatial filter optimized using Common Spatial Pattern (CSP) algorithm for EEG/ MEG 

(Magnetoencephalogram) BCI is reported in (Moritz & Buss, 2008), which faces two 

shortcomings, the first in terms of classification error and second in terms of CSP being 

extended to multiclass classification with heuristics. The Information-Theoretic Feature 

Extraction (ITFE) along with Joint Approximate Diagonalization (JAD) was proposed to 

address these issues (Moritz & Buss, 2008).   The mean classification accuracy is increased by 

23.4% with a new scheme tested with dataset IIIa of BCI competition III. Subject-specific 

feature extraction and Motor Imagery classification technique based upon subject-specific 

discriminative Filter Bank with common spatial pattern algorithm reported (Thomas et al., 

2009) to reduce error rates by 8.9% and 17.42% for dataset IIb of BCI competition IV and 

dataset IVa of BCI competition III respectively.  

In (Naeem et al., 2009), the preprocessing with PCA has not been found suitable in a small 

set of components for retaining motor imagery information. The 6 ICA components selected 

by visual inspection resulted in a 61.9% classification rate while the full range of 22 

components has resulted in 63.9%. A variance criterion for automatic selection of ICA 

components has selected 8 components and has given a 63.1% classification rate. Selection of 

electrodes from mid-central and centroparietal regions of the brain and, by using CSPs and 

infomax also has resulted in good classification accuracy for motor imagery detection.    

A Motor Imagery training system for neurofeedback-based BCI is proposed in (Hwang et 

al., 2009). The real-time brain activation maps on the cortex are shown to subjects in this 

system. A total of ten healthy subjects, out of whom five are trained for the system while the 

other five are not trained, have taken part in the experiment. The trained group of participants 

has successfully performed the motor imagery task and activated their motor cortex without 

moving their limbs. This system is demonstrated as an effective training tool for motor 

imagery tasks in BCI.  

In (Shahid et al., 2010), the authors propose a scheme for the extraction of nonlinear 

features, which uses higher-order statistics. This technique, the bispectrum reports the 

performance of the system in terms of mutual information, classification accuracy, and 

Cohen's kappa depicting to give better power spectrum based BCI.  

Kaushik Majumdar et al. (Majumdar, 2011) present a survey on soft computing techniques 

for pattern data mining /recognition from EEG signals. The computational intelligence 

techniques such as neural statistical discrimination, networks, evolutionary computation, 

fuzzy logic, and Bayesian inference, have been used for pattern recognition from EEG 

recorded from human subjects. The dimensionality of EEG data has increased due to the 

availability of high-density EEG recording systems at an affordable cost. Soft computing 

techniques are gaining attention for the processing of high-dimensional data. The survey 

concluded that the Bayesian approaches and the Artificial Neural Network (ANN) based 

approaches emerged as more advantageous over other soft computing techniques for MI-
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based BCI.  The Ref. (Wei & Wang, 2011) a scheme based upon Binary Multi-Objective 

Particle Swarm Optimization (BMOPSO) is proposed to address the channel selection and 

classification problem for motor imagery tasks for a BCI.  

The selection of channels in BCI using EEG is necessary because it removes irrelevant and 

noisy channels and thereby improves the system performance and increases user convenience 

by the use of a lesser number of channels. A scheme using Sparse Common Spatial Pattern 

(SCSP) algorithm for channel selection from human EEG for BCI is presented in (Arvaneh et 

al., 2011). This algorithm has been proposed as an optimization problem, to remove irrelevant 

and noisy channels,  the number of channels minimized while classification accuracy 

improved. The classification accuracy improved by 10% with an optimized number of 

channels, over the case when three electrodes, Cz, C3 and C4 were used.  datasets IVa of BCI 

competition III and IIa of BCI competition IV were used for the experiments. 

In Ref. (Tam et al., 2011), a BCI system based upon Support Vector Machine Recursive 

Feature Elimination (SVM-RFE) and Fisher’s criterion is developed to find a minimal number 

of electrodes for chronic stroke patients, to operate an assistive device with more than 90% 

accuracy.  

The authors of (J. Yang et al., 2012) demonstrate the effectiveness of their proposed 

scheme based upon the Genetic Neural Mathematics Method (GNMM) to perform effective 

channel selections/reductions, thereby reducing the difficulty of data collection and improving 

the discriminatory power of classifier. Two datasets have been used in this work, the first is 

ECoG data from BCI competition III while the second a recording of 960 trials with 32-

channel, 256 Hz EEG where participants asked to execute a left or right-hand button-press in 

response to stimuli pointing left or right arrow. Out of 32, Six channels selected, and the 

response correctness classification accuracy achieved is 86% and 82% for the actual hand 

response classification. 

The scheme proposed in (Y. Yang et al., 2012) uses Time-frequency Discrimination Factor 

(TFDF) to extract discriminative ERD features for BCI data classification.  This approach 

gives better classification results (mean kappa coefficient = 0.62), with only two bipolar 

channels. Andrew Jackson, et al. (Jackson & Zimmerman, 2012), presented a review and 

summarized the therapeutic effects that may be achieved by closing the loop between the 

nervous system and electronic devices. 

A scheme, to classify different Motor Imagery (MI) patterns using coefficients of Joint 

Regression (JR) model and spectral powers at two specific frequencies is presented in  (Hu et 

al., 2012), achieved classification accuracies of  90% and 80% on training and test data 

respectively for data of one subject from BCI 2003 Data set III. Wang Deng et al. (D. Wang et 

al., 2012), also use dataset 2a of BCI competition IV, presented, the overall four-class kappa 

values between 0.41 and 0.80. 
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The Multivariate Extensions of Empirical Mode Decomposition (MEMD) presented in 

(Park et al., 2013). The direct processing via enhances the localization of the frequency 

information in multichannel EEG is carried out by MEMD, while Noise-Assisted-MEMD 

gives a highly localized time-frequency representation. The BCI Competition IV Dataset I is 

used for experiments and it is reported that the average classification accuracy found to be 

75.5% and the best classification accuracy is 91.9 % ± 3.0, for subject ‘g’. The electrode 

selection is the main drawback of this work. A total of 11 electrodes from the sensorimotor 

region are selected for each subject. An adaptive scheme for the selection of electrodes for 

individual subjects is required for further improvement of classification accuracy and to make 

the BCI user-friendly.  

The intersession non-stationarity is addressed by EEG data space adaptation (EEG-DSA) 

in (Arvaneh, 2013). The supervised version, and the unsupervised version of EEG-DSA using 

the Kullback-Leibler (KL) divergence criterion. The scheme is evaluated on BCI Competition 

IV data set IIa and another data set recorded from 16 subjects performing motor imagery tasks 

on different days. The reference (Shenoy, 2014), also uses dataset 2a of ‘BCI Competition IV’ 

and ‘BCI Competition III dataset Iva’, and reports the highest classification accuracy 95.18% 

for subject ‘ay’. This technique (Shenoy, 2014) employed a channel selection mechanism 

based upon priori information of the MI task and iteratively optimized the number of relevant 

channels to improve the classification accuracy.  

In the techniques reported in (Shenoy, 2014), the channel selection scheme is not adaptive, 

so the computational intelligence-based techniques can prove to be effective for improving 

channel selection optimization.   

The inconsistencies from multiple classifiers are used to select the relevant EEG electrodes 

for the M.I. tasks in (H. Yang et al., 2014). The noisy channels fluctuate the classification 

accuracies make the basis for channel selection and the identified noisy channels are removed 

by this technique. A random forest (RF) classifier with feature extraction by Filter bank 

common spatial pattern (FBCSP) is used for classification of M.I. task from EEG in 

(Bentlemsan et al., 2014). The system performance is evaluated on ‘Dataset 2b’ of the ‘BCI 

Competition IV’. 

 The authors of (Tomida & Tanaka, 2015) present a sparsity-aware data selection 

method from multiple trials of EEG recordings. A weighted averaging with weight 

coefficients for rejecting the trials is introduced. The ℓ1-minimization is used to find the 

weight coefficients, leading to sparse weights such that low-quality trials are allotted nearly 

zero-values. This method is used to estimate covariance matrices for CSP.  

The long-term training effects across 10 sessions using a 2-class MI-tasks in fifteen 

subjects are investigated using EEG and functional near-infrared spectroscopy (fNIRS) in 

(Kaiser et al., 2014). 
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In Ref. (Baali et al., 2015), linear prediction singular value decomposition (LP-SVD) is 

proposed for feature extraction and resulting average accuracy as 81.38%, when tested on 

‘BCI competition’ ‘IIIa data set’. In (Soman & Jayadeva, 2015), a mechanism for M.I. 

classification proposed which uses the combination of ‘classifiability’ for selecting the 

optimal frequency band and Twin Support Vector Machine (TWSVM) as a classifier, The 

scheme evaluated on 'dataset 2b’ of ‘BCI competition III’. The use of 'classifiability' as a 

mechanism for optimal selection of features is the major drawback of this approach (Soman & 

Jayadeva, 2015) and can be replaced with an evolutionary approach for improving the 

classification accuracy and long-term online training.   

In Ref. (Meng et al., 2015), a scheme has been presented for spatial-spectral features 

extraction from EEG using an objective function based on Bayes classification error and the 

mutual information between spatial-spectral MMISS features and class labels. The maximum 

classification accuracy 97.9% for subject ‘al’ from ‘dataset IVa’ of ‘BCI competition III’ is 

reported. Experiments on monkeys presented in  (Kao et al., 2015), describes the evolution of 

dynamics of the neural population through time.  

Recent approaches towards the classification of events from EEG signatures include 

‘Robust Support Matrix Machine(RSMM)’, for data of a single trial EEG (Zheng et al., 2018), 

covert verb reading in motor imagery paradigm (Zhang et al., 2018), hybrid BCI combining 

M.I and P300 potentials for driving wheelchair (Yu et al., 2017), bilinear regularized locality 

preserving (BRLP) and extreme learning machine based BCI (Xie et al., 2018), Kullback-

Leibler divergence based feature selection (J. Wang et al., 2018), ‘common spatial pattern’ 

algorithm-based feature extraction and a fusion of ‘fuzzy’ ‘standard additive model’ with 

‘particle swarm optimization’ (Nguyen et al., 2018), Spiking Neural Models (Salazar-Varas & 

Vazquez, 2018), convolutional neural network (CNN) architecture for M.I. classification 

(Sakhavi et al., 2018), android feedback-based BCI training system (Penaloza et al., 2018), 

‘feature weighting and regularization’ (FWR) method using all ‘Common Spatial Pattern’ 

features to minimize information loss (Mishuhina & Jiang, 2018), and Dealing uncertainty in 

motor imagery classification with ‘type-2 fuzzy logic system’ (Herman et al., 2017). The 

study and analysis of these recent approaches paved the way for the present proposed 

approach for motor imagery classification with optimal channel selection.  

Methodology  

This section proposes a novel motor imagery classification and channel selection scheme. 

This scheme is based upon ‘wavelet packet decomposition’, ‘approximate entropy’, ‘support 

vector machine’ and ‘Genetic Algorithms’. This section describes the implementation details 

of different tools and technologies used. The scheme starts with the selection of data, 

processing of this data with wavelet packet decomposition for selection of sensory-motor 
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frequency bands and giving wavelet coefficients for feature computation followed by channel 

and feature selection by GA with SVM acting as the objective function. 

Data Selection 

The ‘data set I’ of ‘BCI Competition IV’ (Blankertz et al., 2007) is taken for training and 

testing of the proposed scheme. The data corresponds to EEG signals measured from 59 EEG 

electrode positions. Out of these 59 electrodes, some of the electrodes carry data that are more 

correlated to the intended motor imagery. Each subject chose 2 motor imagery tasks amongst 

the following three (movement of):  right hand, left hand, and foot (both feet). The subjects 

performed a total of 200 trials and in each trial; the subject imagined one of the two possible 

tasks for 4 seconds. It is specified that the subject 'a' chose left hand and foot, subject 'b' chose 

left hand and foot (both feet) and right hand, subject 'f' chose left hand and subject 'g' chose 

left and right hands (Park et al., 2013).  

Table 1. The sizes of datasets for different subjects for Dataset 1 of BCI Competition IV 

‘a’ 190549×59 int16 
‘b’ 190549×59 int16 
‘f’ 190608×59 int16 
‘g’ 190602×59 int16 

The 100 Hz down-sampled data is taken for the present work. The data is provided for all 

the subjects (BCI Competition IV, 2008). The sizes of data for different subjects are shown in 

Table1. The mark information (in the folder 'mrk' in data provided in .mat format) is provided 

for the starting point of each trial in a data set, which is used to prepare data segments for all 

the trials. The 200 segments for each subject are extracted as the data is provided for 200 

trials with mark information.  

Wavelet Packet Decomposition Sensorimotor Frequency Band Selection and Feature Extraction 

The wavelet packet decomposition at the 8th level is used to decompose each EEG segment 

(data corresponding to each trial) for the subjects under consideration. After decomposition, 

256 coefficients are obtained. The wavelet spectrum (via wpspectrum command in Matlab) is 

used to find the wavelet coefficients corresponding to the sensorimotor frequency band (i.e., 

8-32Hz). A total of 124 coefficients (out of a total of 256 coefficients) corresponding to this 

frequency band are selected for each EEG segment.  

For one subject, a total of 200 trials resulted in 124×59×200 number of coefficients for 

further feature extraction. Approximate entropy (Pincus et al., 1991) is computed for each 

WPD coefficient at each selected node (total 124 nodes selected in the desired spectrum) for 

all the 59 channels, to compute the feature vector. This feature vector forms the search space 

for GA to search the optimal channels and relevant features for optimizing the classification 

accuracy among two motor imagery tasks.   
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The Genetic Representation 

A binary-coded GA is employed for the proposed application. We conjectured and devised a 

novel 3-dimensional genetic representation of the population employed for the G.A. In this 

representation, instead of a single string, a chromosome is represented by a two-dimensional 

structure with each column of chromosome representing the feature vector (total 124 features) 

for a particular channel (total 59 channels corresponding to each column).  

Fig. 1 (a) and (b) represent the two-dimensional chromosome structures. In Fig 1 (a), the 

allele value 𝑎𝑛,𝑚represents the feature number n belonging to channel number m. Fig.1 (b) 

represents the binary allele values randomly initiated by a coin flip (a subroutine is coded in 

Matlab for coin flip). A chromosome comprises 59 × 124 matrix of binary alleles (either a 0 or 

1) as shown in Fig.1 (b).  

The complete population is a three-dimensional structure containing binary allele values in 

each chromosome, as shown in Fig. 2. In the three-dimensional population, the allele𝑎𝑛,𝑚,𝑟 

belongs to chromosome ‘r’ with ‘n’ and ‘m’ as explained above.  The first row of each 

chromosome is used to present the selection or rejection of the particular channel. In the front 

page (i.e. 59×10 matrix), the presence of '1' implies the corresponding channel is selected 

while the presence of '0' corresponds to rejection of the corresponding channel. In the same 

way, the presence of '1' corresponds to selection and '0' corresponds to rejection of the 

corresponding feature in subsequent pages. The selected features of only the selected channels 

will participate in the classification process during computation of the classification rate to 

serve as fitness value for the corresponding chromosome.  

The rationale for the 2-d representation of chromosome: The advantage that accrues from 

2- dimensional representation of a chromosome is that not only the features are optimally 

selected but also the relevant electrodes are simultaneously selected optimally by the GA.  

                 

Fig 1. Structure of two dimensional      Fig 2. Three dimensional structure of population 
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Chromosome 

The Genetic Operators 

The canonical GA contains selection, cross-over and mutation operators. In the proposed 

scheme, the initial three-dimensional binary population is generated randomly, i.e., with coin 

flip subroutine. The Roulette Wheel Selection is used as the selection mechanism. A novel 

modified cross-over is implemented for the three-dimensional representation of the binary 

population, which is explained in this section. The mutation is a simple random (but dictated 

by the probability of mutation) bit flip for binary representation of allele values. The 

description of initialization of the GA population and different operators is explained below: 

Initialization of Population 

A binary population is initialized using coin flip subroutine; the outcome of head corresponds 

to '1' and tail to '0'. The size of the population is 59×10×124 (59 rows, 10 columns and 124 

pages) as shown in Fig. 2 depicts the representation of the population. The population size '10' 

is selected on the rationale that according to the theory of large numbers; '10' is considered the 

smallest large number. 

Computing Fitness 

SVM is employed for computation of classification rate corresponding to each chromosome, 

which forms a part of fitness value. In the front page of population, the channel (electrode) 

positions corresponding to '1' are selected and further the features corresponding to '1'  

(out of total 124 features per electrode) in all the pages corresponding to the selected 

channel are taken for the computation of classification rate. One row with corresponding 

pages in the 'r’ dimension forms a chromosome (size 59×124, [𝑎𝑛,𝑚,𝑟] with n=1 to 59, m= 1 to 

124 and r=1 forms the first chromosome of the population). The fitness is computed for all 

chromosomes (10) in the population. A feature vector is formed by fetching all the selected 

feature values for 200 trials for a subject and these features are presented for training and 

testing of the SVM gives part of fitness values, using ten-fold cross-validation. Fitness is 

computed for all the chromosomes (10) in the population. The fitness value of the 

chromosome is given by:             

FV = C – w1E –𝑤2F          (6.1) 

Where, FV = Fitness Value, C = Classification accuracy (computed by SVM), 

 E   = Number of electrodes (Channels), F = Number of Features  

w1 and w2 = weighting factors  

The typical values for w1= 0.002 and w2=0.001 are taken in the present application. 
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The rationale for the choice of fitness function: All the channels for which EEG data is 

recorded are not relevant (even some of them are quite far away from the neural activation 

region corresponding to the motor imagery activity under consideration). So, the selection of 

relevant channels is an important aspect of designing an effective MI classification system. 

The number of channels is to be reduced and only the relevant channels to be selected, so, the 

number of channels with a weighting factor is subtracted. Also, all the features corresponding 

to a selected channel are not relevant for classification, so to minimize the number of features 

the corresponding number with a weighting factor is deduced from fitness value. The values 

of the weighting factor are chosen primarily to make their values below 1 (because the max 

value for classification rate is 1 here (i.e., 100%)) and secondly to give more weight to 

classification rate the values are tuned. Further, the tuning of weighting factors is another 

open area of research we recommend. 

Selection 

Roulette Wheel Selection (RWS) is employed in the present implementation. 

Cross-Over 

The novel modified cross-over scheme implemented is shown in Fig.3 and Fig.4. The value of 

the probability of cross-over is chosen as 0.8 in conformity with that made use of by most 

researchers (Srinivas & Patnaik, 1994). The cross-over site is also selected by a random 

process which gives a number that decides the cross-over site. One point cross over is 

performed two times on pair of parents in a single iteration on two-dimensional chromosomes 

as shown in Fig.3.  The selected chromosome pairs (parents) first undergo one point cross-

over on the front page. The part of the chromosome to be exchanged is copied as a whole and 

not the first page only. For example, if the cross-over site is 3, then the two chosen 

chromosomes are dissected after 3rd allele, thus the dissected parts dimensions (1×3×124) 

and (1×56×124). Then, the first part (size 1×3×124) of the first chromosome is concatenated 

with the second part (size 1×56×124) of the second chromosome to form the child 

chromosome of size (1×59×124). The remaining parts of the two chromosomes are similarly 

concatenated to form the second child chromosome. So, it can be stated that the first one-

point cross-over is carried out along the second dimension of the population throughout the 

population. Once this process is over, the cross over along y dimension is carried out. The 

cross-over is carried out in such a way that the strings exchanging the genetic material belong 

to the same electrodes. The size of each of the chromosomes participating is 1×59×124 each. 

The process is explained by taking an example of two chromosomes probabilistically 

(probability of cross over allowed for cross-over) selected for cross-over. The random cross-

over site chosen is, say 35, thus the two parts of each of the chromosome have sizes 

(1×59×35) and (1×59×89) respectively. The first part having a size (1×59×35) of chromosome 

1 is concatenated with the second part of the chromosome 2 to form child 1 (size1×59×124) 

chromosome and the remaining parts of the parent chromosomes are similarly concatenated to 
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form the child 2 (size 1×59×124). Fig 4 depicts the process of two-dimensional cross-over on 

a smaller sized two-dimensional chromosome.  

Mutation 

The value of the probability of mutation𝑝𝑚 is chosen 0.003 in conformity with value 

prevalent in most research papers on GA applications. The algorithm for mutation is applied 

to all the allele positions in the population and where ever mutation is allowed 

probabilistically by the probability of mutation, the corresponding bit is flipped from ‘1’ to ‘0’ 

and vice-versa. 

            

Fig. 3: Cross-over on pair of two-          Fig. 4 The modified cross-over for 2- 

dimensional chromosomes            dimensional chromosomes (m×n) 

Stopping Criterion  

The stagnation of average fitness is taken as the stopping criterion. The variation in average 

fitness is monitored and if it is below 0.5% for successive 5 runs, then the GA is stopping 

from further evolution. 

Proposed Genetic Algorithms Based Motor Imagery Classification and Channel 

Minimization Scheme 

The proposed scheme is implemented in Matlab and trained and tested using data of 

different subjects from dataset 1 of BCI competition IV. The scheme started with extracting 

EEG segments for all trials (200 trials per subject available) for different subjects. The 

features are extracted as explained in section III. 
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For the proposed GA based scheme (WP-GA-SVM), a total of 59×124=7316 number of 

features are extracted for all channels and all WPD coefficients. This feature space forms the 

search space for GA. The GA is coded as explained in the implementation details in the 

previous section. The scheme is trained and tested for four subjects 'a', 'b', 'f' and 'g'. The 

schemes using dataset 1 of BCI competition IV presented in the literature (Park et al., 2013) 

(Tomida & Tanaka, 2015) have also presented results for subjects 'a', 'b', 'f' and 'g'. The flow 

chart for the proposed GA based scheme is depicted in Fig.5 and explained as the algorithm 

given below.  

 

Fig. 5. Proposed GA based scheme for channel selection and motor imagery classification 

Algorithm: 

1. Read data for subjects ‘a’, ‘b’, ‘f’ and ‘g’. 

2. Extract EEG segments (one segment for one trial) for all electrodes (for all subjects) 

according to mark information available in the description of the dataset. 

3. Perform wavelet packet decomposition on every EEG segment. 

4. Select wavelet packet coefficients corresponding to the sensorimotor frequency band, i.e., 

8-32 Hz (total of 124 coefficients selected). 
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5. Compute approximate entropy for each WPD coefficient (compute feature vector for all 

200 trials for all the subjects). 

6. Initialize binary population for GA (matrix of size 59×10×124). 

7. Compute the classification rate for each chromosome by training and testing with the 

feature vector for all trials available and then compute fitness for each chromosome of the 

population (using Objective).  

8. Perform the Roulette Wheel Selection. 

9. Perform cross-over 

10. Perform mutation. 

11. Compute fitness (as in step 7) 

12. Check the stopping criterion (stagnation in the improvement of average fitness: the 

variation in fitness have less than 0.5 % of average fitness in successive 5 iterations) 

If stopping criterion met then stop iterations, else go to step 8. 

Results  

Results of classification and optimization of the number of channels are presented in this 

section.  The data for all subjects are segmented as per mark information available for trials. 

All subjects chose any two motor imagery tasks. The data contains 200 trials comprising of 

100 trials per M.I. task. The EEG segments are decomposed at the 8th level and 

decomposition coefficients corresponding to sensorimotor frequency band are selected for 

feature extraction. In the proposed WPD-GA-SVM scheme, GA is employed for the selection 

of relevant channels and further relevant features are extracted from the selected channels to 

maximize the classification accuracy. The comparison of the results of the proposed schemes 

with the published results (Park et al., 2013) (Tomida & Tanaka, 2015) is presented in Table 2. 

For subject ‘a’ accuracy is 88.9±6.9 with 10 channels, for subject ‘b’ accuracy is 

79.20±5.36with 11 channels, for subject ‘f’ accuracy is 90.50±3.56 with 13 channels, and for 

subject ‘g’ accuracy is 92.23±3.21with 12 channels. The proposed scheme outperforms in 

terms of classification accuracy for subjects ‘a, b, f, g’ and in terms of number of channels for 

subject ‘a’ and that for subject ‘b’ is same as reported earlier in literature (Tomida & Tanaka, 

2015).  The results for proposed scheme WPD-GA-SVM outperform the results reported in 

(Park et al., 2013) (Tomida & Tanaka, 2015) for subjects ‘a’, ‘b’, ‘g’ & ‘f’, in terms of 

classification accuracy. In terms of the number of channels, the proposed approach WPD-GA-

SVM outperforms the results reported in (Tomida & Tanaka, 2015) for all subjects and 

outperforms the results reported in (Park et al., 2013) for the subject 'a' only and that for 

subject ‘b’ is at par with that of  (Park et al., 2013).  

The proposed scheme is a significant new research contribution to evolutionary 

computation in terms of proposed new three-dimensional representation of binary population 
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of GA and further modification in GA operators as per the requirement for the new 

representation of population. The efficacy of the proposed new scheme is evident from the 

results obtained for the motor imagery classification and optimization of channels for dataset I 

of BCI competition IV.  

Table 2. Comparison of the results of the classification of the proposed techniques with 

techniques reported in the literature. 

Subject 
Sr. 

No. 
Technique Classification accuracy No. of Channels 

 

 

 

 

 

 

‘a’ 

  m=1 m=2  

1 BF (Park et al., 2013)      ±11.2 82.3±4.8 11 

2 CWT (Park et al., 2013) 66.2±10.6 84.5±5.5 11 

3 SST (Park et al., 2013) 67.1±11.6 84.0±4.5 11 

4 EMD (Park et al., 2013) 57.0±6.6 62.6±6.0 11 

5 EEMD (Park et al., 2013) 63.0±8.2 78.4±    11 

6 MEMD (Park et al., 2013) 70.5±11.2 85.7±4.0 11 

7 NA-MEMD (Park et al., 2013) 69.8±10.6 85.9±3.9 11 

8 
CSP Method (Tomida & 

Tanaka, 2015) 
71.50±9.75 59 

09 WPD-GA-SVM (Proposed) 88.9±6.9 10 

 

 

 

 

 

 

‘b’ 

  m=1 m=2  

1 BF (Park et al., 2013) 57.6 ±7.5 58.6±    11 

2 CWT (Park et al., 2013) 71.4±6.5 71.0±    11 

3 SST (Park et al., 2013) 68.4±7.6 70.5±    11 

4 EMD (Park et al., 2013) 52.1±5.7 57.3±    11 

5 EEMD (Park et al., 2013) 67.9±8.0 69.8±    11 

6 MEMD (Park et al., 2013) 75.6±5.2 73.9±    11 

7 NA-MEMD (Park et al., 2013) 78.7±    77.6±    11 

8 
CSP Method (Tomida & 

Tanaka, 2015) 
75.00±4.68 59 

9 WPD-GA-SVM (Proposed) 79.20±5.36 11 

 

 

 

 

 

 

‘f’ 

  m=1 m=2  

1 BF (Park et al., 2013) 52.6±6.9 60.2±6.8 11 

2 CWT (Park et al., 2013) 52.9±5.7 558.5±7.3 11 

3 SST (Park et al., 2013) 54.4±7.1 72.2±5.6 11 

4 EMD (Park et al., 2013) 52.2±5.9 57.2±6.0 11 

5 EEMD (Park et al., 2013) 53.5±11.2 69.7±7.2 11 

6 MEMD (Park et al., 2013) 57.5±13.4 77.8±4.3 11 

7 NA-MEMD (Park et al., 2013) 57.3±14.2 78.8±4.4 11 

8 
CSP Method (Tomida & 

Tanaka, 2015) 
89.50±4.47 59 

9 WPD-GA-SVM (Proposed) 90.50±3.56 13 

 

 

 

 

 

 

‘g’ 

  m=1 m=2  

1 BF (Park et al., 2013) 86.9±7.4 85.6±4.6 11 

2 CWT (Park et al., 2013) 78.8±9.4 88.1±4.6 11 

3 SST (Park et al., 2013) 91.4±2.9 90.5±3.5 11 

4 EMD (Park et al., 2013) 65.5±10.8 72.3±7.5 11 

5 EEMD (Park et al., 2013) 89.4±3.9 88.6±3.7 11 

6 MEMD (Park et al., 2013) 91.9±3.0 91.5±3.5 11 

7 NA-MEMD (Park et al., 2013) 91.0±3.3 90.9±3.5 11 

8 
CSP Method (Tomida & 

Tanaka, 2015) 
90.00±3.54 59 

9 WPD-GA-SVM (Proposed) 92.23±3.21 1   12 
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Note: The abbreviations in Table 2 stand for m = number of common spatial filters, BF – Butterworth 

Filter, CWT – Continuous Wavelet Transform, SST – Synchro-Squeezed Wavelet Transform, EMD – 

Empirical Mode Decomposition, EEMD – Ensemble Empirical Mode Decomposition, MEMD – 

Multivariate Empirical Mode Decomposition and NA-MEMD – Noise Assisted Multivariate 

Empirical Mode Decomposition, WPD – Wavelet Packet Decomposition, GA – Genetic Algorithm, 

SVM- Support Vector Machine. 

Conclusion 

The BCI research can assist in providing alternative means for communication and control 

capacities to the patients with neuro-motor disabilities. In the present paper, an effective novel 

scheme for motor imagery classification is presented. A new representation for binary 

population and a new cross-over method for GA are introduced. 

The effectiveness of the scheme is apparent from results in which the proposed scheme 

outperformed the results of existing techniques for subjects ‘a, b, f, g’ and also in terms of 

selection of channels for subject ‘a’. Therefore, proposed scheme contributes a significant 

development in terms of new three-dimensional representation of binary population for GA as 

well as significant new modification to the GA operators. The efficacy of the scheme is 

evident from the results presented in the paper for dataset under consideration. The future 

course of research may include adding adaptation in GA at different levels, for the present 

application. A lot of research is yet to be carried out before the day will come when the 

patients with completely locked-in and other types of neuro-motor disabilities will use the 

EEG based prosthetics with ease.   
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