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ABSTRACT 

Due to the rapid advancements in computer technology, researchers are attracted 

to solving challenging problems in many different fields. The price of rainbow 

options is an interesting problem in financial fields and risk management. When 

there is no closed-form solution to some options, numerical methods must be 

used. Choosing a suitable numerical method involves the most appropriate com-

bination of criteria for speed, accuracy, simplicity and generality. Monte Carlo 

simulation methods and traditional numerical methods have expensive repetitive 

computations and unrealistic assumptions on the model. Deep learning provides 

an effective and efficient method for options pricing. In this paper, the closed-

form formula or Monte-Carlo simulation are used to generate data in European 

and Asian rainbow option prices for the deep learning model. The results con-

firm that the deep learning model can price the rainbow options more accurately 

with less computation time than Monte-Carlo simulation. 

 

1 Introduction 
 

An option is a kind of financial derivative i.e., its value depends on the performance of one or more 

underlying assets. More precisely, an option is a contract between two parties that gives the holder the 

right (but not obligation) to buy or sell some of the underlying asset in the future. In general, options 

can be divided into path-independent and path-dependent categories. For instance, European options 

are path-independent and their payoffs depend on the price of the underlying asset at the maturity 

whereas Asian options are path-dependent that their payoffs depend on the average price of the under-

lying asset over part or all of its life. Both European and Asian options are traded in the financial 

markets, both in exchanges and over-the-counter. The buyer of an option gives the seller an amount 

called premium when setting up the contract. The premium value depends on the underlying assets 

prices on the current time and the kind of option [4, 21, 15, 18]. 

     Uncertainty and randomness in financial markets have made analysing and identifying the behav-

iour of these markets attractive and challenging. Financial mathematics tries to model and analyse 

these markets with a combination of stochastic processes, economics, financial engineering, numeri-

cal analysis and random calculations. Artificial intelligence is in its second new era, while the re-

search on this context that how machines can display levels of human intelligence began in the 1950s 
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[16]. Nowadays, the artificial intelligence is often the implementation of machines on very large neu-

ral networks with very many layers. The purpose of these neural networks is to mimic the human 

brain function, i.e., by receiving extensive stimuli and then decomposing them through the layers and 

neurons which learn to relate the input to the output. With enough data, we can train an artificial neu-

ral network to learn the best relation between inputs and outputs and then it can be used to do it fre-

quently [2, 20]. The input and output sets can be very large, but it turns out that the large-scale artifi-

cial neural network are skilled in relating big data to multiple outcomes through training. Actually, 

machines can be trained much faster than humans and perform this analysis quickly. 

     For large neural networks also known as deep learning, there may be millions of parameters [13]. 

To find these parameters, it is computationally impossible to obtain numerical gradients for optimiza-

tion. Fortunately, we can do this analytically with linear calculations using the backpropagation algo-

rithm. In summary, learning is an optimization problem and large-scale learning is much easier when 

done analytically than numerically. With the development of artificial intelligence technology and the 

machine learning, many issues, including financial issues that do not have analytical solutions, have 

been investigated through the machine learning. In addition to the computational power required for 

parametric calibration, the classic parametric models make unrealistic economic and statistical as-

sumptions. The use of data-oriented approaches based on non-parametric models may be a suitable 

alternative. Recently, in [8] the performance of option pricing based on the most popular machine 

learning algorithms is investigated. In [12] a new forward-backward stochastic differential solver is 

introduced based on deep learning and least square regression for American options. However, the 

multi-asset option pricing has been investigated by various methods such as alternating direction im-

plicit methods, finite difference methods, mesh-free methods, and Monte-Carlo simulation [3, 10, 11, 

14], but in the best of our knowledge, the machine learning model has just been implemented for sin-

gle-asset option pricing [6]. In this paper we use the machine learning and artificial neural networks, 

which is an effective and practical method in calculating and solving challenges in various sciences, 

to price the European and Asian rainbow options. This method eliminates the need for unrealistic 

economic and statistical assumptions in practice. 

     In Section 2 we describe four types of two-asset European options, including a call option on the 

maximum of two assets, a call option on the minimum of two assets, a relative outperformance option 

and a product option. Furthermore, the arithmetic and geometric two-asset Asian option which have 

been priced by implementing the Monte-Carlo method. In Section 3 some concepts and computational 

methods in the machine learning and thee artificial neural networks are reviewed in summary. Moreo-

ver, a brief description of the deep learning and the TensorFlow software library is provided. Section 

4 implements the concepts and computational methods presented in Sections 2 and 3 for a deep learn-

ing model to estimate pricing of options which are generated according to four data sets from four 

mentioned European options and then the results are reported and concluded. Thereupon according to 

the standard Monte-Carlo simulation method and Monte-Carlo simulation with variance reduction 

technique for two-asset Asian option with arithmetic and geometric average, we train the four sets of 

generated prices data, and then the results are represented numerically and intuitively. Finally, we 

investigate the efficiency of deep learning in two-asset Asian option pricing in terms of computational 

time. Finally, at the last section we conclude the efficiency of the methods and compare the obtained 

results. 
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2 Multi-Asset Options 
 

The price of a multi-asset option is the solution of the multi-dimensional Black-Scholes (B-S) equa-

tion which is the following d-dimensional partial differential equation (PDE): 

for (𝑺, 𝑡) ∈ (0, ∞)𝑑 × [0, 𝑇), with the final condition 𝑉(𝑺, 𝑇) =  𝑉𝑇(𝑺), where 𝑉(𝑺, 𝑇) is the value of 

the option in the multi-asset 𝐒 =  (𝑆1, 𝑆2, . . . , 𝑆𝑑) at time 𝑡. 𝑇 is the maturity time, 𝜎𝑖 is the volatility 

of underlying asset 𝑆i, 𝜌ij is the correlation between the 𝑖-th and the 𝑗-th assets, and r is the risk-free 

interest rate. Rainbow Options refer to all multi-asset options whose payoff depends on more than one 

underlying risky asset. For now, we restrict the discussion to the two-asset case, i.e., 𝑑 = 2. Two-

dimensional B-S equation with two assets 𝑥 = 𝑆1  and 𝑥 = 𝑆2 is the following PDE: 

for (𝑥, 𝑦, 𝜏) ∈ Ω × [0, 𝑇), with the initial condition 𝑉(𝑥, 𝑦, 0) = 𝑉0(𝑥, 𝑦)which is the equation (1) with 

variable changing 𝜏 = 𝑇 − 𝑡 in the truncated domain Ω = (0, 𝑥𝑚𝑎𝑥) × (0, 𝑦𝑚𝑎𝑥). Now we consider 

some various European and Asian rainbow options. 

2.1 European Rainbow Options 

2.1.1 Call Option on the Maximum of Two Assets 

 
The European call option on the maximum of two assets with the strike price K has the payoff  

𝑉(𝑥, 𝑦, τ) = max {max{x − K, y − K} , 0}. The closed form solutions of the option is as follows [17]: 

where 𝑀 is the cumulative bivariate normal distribution function and defined as 

and other parameters are as follows: 

 
 

2.1.2 Call Option on the Minimum of Two Assets 
 

The call option on the minimum of two assets with the strike price 𝐾 has the payoff 𝑉(𝑥, 𝑦, 0) =

max {min{x − K, y − K} , 0}. The closed form solution for this option is given by [17] 

where its parameters are the same as the parameters in Section 2.1.1. 
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2.1.3 Relative Outperformance Options 
 

The relative outperformance options have been introduced by Derman [5] and Zhang [19]. The payoff 

of a relative outperformance call option with the strike price 𝐾 is 𝑉(𝑥, 𝑦, 0) = max {
𝑥

𝑦
− 𝐾, 0}, which 

has the following closed form solution 

 

 

and N is the cumulative standard normal distribution function. 

 

2.1.4 Product Options 
The two-asset product call option has the payoff 𝑉(𝑥, 𝑦, 0) = max {𝑥 × 𝑦 − 𝐾, 0} and the 

closed form solution as [19] 

where  

The parameters 𝑑1 and 𝑑2 are the same as (10). 

 

2.1.4 Asian Rainbow Options 

The payoff of a multi-asset Asian option is determined by an average of underlying asset prices [9]. 

Suppose 𝑆𝑖(𝑡𝑗), 𝑖 = 1,2, … , 𝑑 shows the asset price 𝑆𝑖 at time 𝑡𝑗, then the arithmetic payoff 𝑉 in the 

continuous case is 

where 𝛼𝑖 are the weights such that ∑ 𝛼𝑖 = 1𝑑
𝑖=1 . Since the problem of arithmetic Asian option pricing 

cannot be reduced to a one-dimensional problem, therefore there is no simple pricing formula for this 

problem [7]. Now we consider a two-asset Asian call option with the payoff V and the continuous 

arithmetic average with identical weights, i.e., 

     

  By choosing 𝑁 sufficiently large, this option can be approximated with the corresponding discrete 

arithmetic average with the following payoff 

    

𝑉(𝑥, 𝑦, 𝜏) = 𝑒−𝑟𝜏[𝐹𝑁(𝑑2) − 𝐾𝑁(𝑑1)],    (8) 
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  Furthermore, we suppose the assets prices follow a geometric Brownian motion with the risk-free 

interest rate as follow 

 

where 𝐶𝑜𝑣(𝑑W1(𝑡), 𝑑W2(𝑡)) = 𝜌𝑑𝑡. Inspired by the above approach, the continuous geometric two-

asset Asian option payoff is defined as 

 

     With implementing the standard Monte-Carlo (MC) method, an estimation of an Asian option 

price can be achieved. In order to improve the efficiency of the standard Monte-Carlo method, we will 

apply a variance reduction technique based on the antithetic variate (MC-AV). 

 

3 Deep Learning  
 

     In the data age, for storage the various forms of information, powerful sources are provided. In the 

most area, analysing plenty of these data and making decision based on them is practically out of the 

human ability. Therefore, the deep learning algorithms try to use the data for improving human utiliz-

ing services. The deep learning is a branch of the machine learning and artificial intelligence which 

tries to model the abstract concepts with learning in various levels. The machine learning makes a 

mathematical model based on sample data which is known as training data for prediction or decision 

without explicit instruction. In this study, the supervised learning has been used for the model learn-

ing. In the supervised learning, the model is trained with the labelled training data in order to the ma-

chine can decide properly about the labels of data which has not seen yet and confront by them in the 

future. Deep learning actually is learning with the neural networks which has many hidden layers. In 

deep learning a library which is called TensorFlow is used for training the neural networks with more 

than two layers. TensorFlow is a powerful open source software library to show all computations and 

samples in a machine learning algorithm such as: mathematical operations, parameters and updates 

rules in the large scale [1]. In the first glance, the computations which is done in TensorFlow seems 

complicated, but this complexity makes it possible to implement complex and difficult models more 

easily. TensorFlow uses data flow diagram to display all possible calculations in a specific applica-

tion. 

 

4 Two-Asset Rainbow Options Pricing with Deep Learning  
 

In this section, pricing of the two-asset rainbow options is determined by using the deep learning 

method. To use neural networks and deep learning for pricing options, we need to generate large 

enough data of these options. 
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2

2
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Fig. 1: Flowchart of the Data Generating Process for the Two-Asset Options. 

Fig. 1 shows the flowchart of the data generating process for the two-asset options in Sections 2.1 and 

2.2. The top first flowchart is for the European options which first generates the parameters randomly 

and then we give them to the four closed-form solutions in Section 2.1, afterwards we get the Europe-

an option price. As a result, we have generated data related to the machine learning. As the top 

flowchart, the bottom one generates the data according to the Asian options with geometric and 

arithmetic mean using the MC simulation and the MC-AV method. 

 

Table 1: Parameters Range for 100,000 Simulation of Two-Asset European and Asian Option Price. 

Parameters Range 

Initial price of the first stock (S1) $10 − $300 

Initial price of the second stock (S2) $10 − $300 

Strike price 1% − 5% 

Maturity time 1 − 3 years 
Correlation coefficient −0.9 − 0.9 

Volatility of S1 10% − 90% 

Volatility of S2 10% − 90% 

 

     The required values of the parameters are randomly selected according to the range of parameters 

in table 1. Considering the above-mentioned options, eight data sets with a size of 100000 for eight 

different options have been generated. The option pricing theory implies that the option price V is 

linearly correlated with the underlying asset price S and the strike price K. Therefore, we can stand-

ardize the generated data by dividing both the underlying asset price and the option price by the strike 

price. We then use the modified data as input to the deep learning network [6]. To use the neural net-

works and deep learning in pricing of the two-asset options, we first need to train a model. For this 

purpose, we divide the eight modified data sets with 100,000 observations in each group into subsets 

containing 80,000 for the training data and 20,000 for the test data. The details of the deep learning 

network for the European and Asian options pricing are as follows: in this deep learning network, 

there are 8 input hyper-parameters. These hyper-parameters through 4 hidden layers which each layer 

has 300 neurons, are adjusted by activation functions. The activation functions in each layer are re-

spectively called as follows: SELU activation function in the first layer, ELU activation function in 

the second layer and ReLU activation function in the third and fourth layers. In the final output layer 

which has unique neurons, the activation function SoftPlus performs computational operations on that 
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random 
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layer. In this learning algorithm, the mean square error (MSE) as the cost function and Adam’s opti-
mization as optimization algorithm have been used. 

 

 
 

Fig. 2:  European Neural Network Pricing Model with a Maximum of Two Assets. 

Figure 2 shows the neural network model of the option pricing, where the input layer includes the 

existing hyper-parameters, 4 hidden layers 𝑓𝑗
𝑖, 𝑖 = 1, 2, 3, 4 , 𝑗 = 1, 2, … , 300 in which 𝑓𝑗

𝑖 indicates the 

𝑖-th function and 𝑗-th neurone. The outer layer shows the option price according to the activation 

function SoftPlus. 

 

5 Accuracy analysis of numerical results 
 

By considering the eight generated data sets for European and Asian Options, we divide the data into 

eight groups with sizes 500, 1000, 5000, 10000, 20000, and 50000 where in each data set, we use 

80% of the data as the training set and the rest as the test set. We teach the model for the option pric-

ing by using the generated data. For each data set, we implemented 100 runs of deep learning using 10 

different training sets and test sets. In these 100 runs of deep learning that has been done, we consider 

the following five criteria for the efficiency of the deep learning: 

• The median of bias (Indicates the median of relative error of the predicted option price). 

• The 95% bias mean (Indicates the mean error of the predicted option price less than 95th per-

centile). 

• Mean squared error (MSE). 

• Correlation coefficient between original and predicted data. 

• The value of 𝑅2 (the proportion of variance in the dependent variable that can be explained by 
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the independent variable). 

Bias shows the relative prediction error. To calculate it, we first compute the absolute value of the 

difference between the predicted option price and the option price based on the original data and di-

vide it by the original data option price. We now examine the numerical results in the generated data. 

 

Table 2: Results of the Deep Learning Efficiency in European Options Pricing for the Data Generated by the 

Closed-Form Formulas. 

 

 

Fig. 3:  Prediction Error Density of Two-Asset European Call Options in the Test Sets of the Option on the 

Maximum Two Assets (Top Left), the Option on the Minimum Two Assets (Top Right), the Relative Out-

performance Option (Bottom Left) and the Product Option (Bottom Right) 
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Table 2 illustrates the explained criteria for the efficiency of deep learning in the European option 

pricing for the generated data by the simulation of the closed-form option pricing formula for different 

options and different sample size. The results obtained from the generated data show that the model 

has been trained properly and with comparison the results for these four different European options, 

we can see that the relative outperformance option has been trained better than other options. Fur-

thermore, however our model for the generated data by the closed-form formula for pricing the prod-

uct option is well trained but its accuracy is weaker than other three options. After presenting the re-

sults of deep learning for different sample sizes and different European options in Table 2, we now 

demonstrate the efficiency of deep learning intuitively. Fig. 3 shows the density of prediction error for 

four European options in the test sets which their error density is located in the interval (−2%, 2%).  

 

 
Fig. 4:  The True Value Versus Predicted Value of Two-Asset European Call Options in the Test Sets of the 

Option on the Maximum of Two Assets (Top Left), the Option on the Minimum of Two Assets (Top Right), 

the Relative Outperformance Option (Bottom Left) and the Product Option (Bottom Right). 

Figure 4 shows the true value versus predicted value for these four mentioned European options. we 

can see that the generated data in the product option deviates more than the other three options, which 

means the model for the generated data in this option is less accurate. Table 3 demonstrates the above-

mentioned criteria for deep learning efficiency in two-asset Asian options pricing with geometric and 

arithmetic mean for the data generated by the MC and MC-AV methods. The results show that the 

model for two-asset Asian options pricing is well trained. Furthermore, the data generated by MC-AV 

has higher accuracy. Now we demonstrate the efficiency of deep learning for two-asset Asian options 

intuitively.  
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Table 3: Results of the Deep Learning Efficiency in Two-Assets Geometric and Arithmetic Asian Options 

Pricing for the Data Generated by MC and MC-AV.  

 

 

Figure 5 shows the prediction error density graphs of four generated data sets from Asian options in 

the test sets which their error density is located in the interval (−4%,4%). 

 
Fig. 5:  Prediction Error Density of Two-Asset Asian Call Options in the Test Sets of MC for Geometric 

Asian Option (Top Left), MC-AV for Geometric Asian Option (Top Right), MC for Arithmetic Asian Op-

tion (Bottom Left) and MC-AV for Arithmetic Asian Option (Bottom Right). 
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Fig. 6:  The True Value Versus Predicted Value of Two-Asset Asian Call Options in the Test Sets of MC for 

Geometric Asian Option (Top Left), MC-AV for Geometric Asian Option (Top Right), MC for Arithmetic 

Asian Option (Bottom Left) and MC-AV for Arithmetic Asian Option (Bottom Right). 

     Fig. 6 shows the true value versus predicted value of two-asset Asian options with geometric and 

arithmetic mean for the generated data by the MC and MC-AV simulations. As we can see that the 

generated data with the MC simulation has more deviation than the generated data by MC-AV in both 

geometric and arithmetic Asian options. Therefore, this model for the generated data by MC-AV is 

more accurate. Table 4 compares the computation time for 1000 and 100000 arithmetic and geometric 

Asian option prices in three methods deep learning (DL), MC and MC-AV. These computation have 

been done by a computer with specifications include a CPU of Intel(R) Core(TM) i5-8250U 

CPU@1.60GHz 1.80 GHz, a GPU of NVIDIA GeForce 840M, a RAM of 8GB, and an HDD of 1TB. 

Therefore, the deep learning methods can also be used by individual investors. 
 

Table 4: The Computation Time. 

Asian Options 
 

Geometric 
 

Arithmetic 

No. of Prices DL MC MC-AV DL  MC MC-AV 

1000 0.31s 1.42s 2.82s 0.49s 1.93s 3.11s 

100000 0.54s 19.24s 26.18s 0.92s 20.14s 35.42s 

 

The results presented in Table 4 indicate that the computation time by the DL for 100000 geometric 

and arithmetic Asian option prices is less than one second while, for MC and MC-AV simulations take 

2 to 35 seconds. Hence, the deep learning method has a good performance in the computation time. 
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6 Conclusion 
 

 In this study, the pricing of the European and Asian rainbow options using the deep learning method a 

data driven approach - has been investigated. For this purpose, random pricing data are generated by 

the closed-form formula of two-asset European options and MC and MC-AV simulations for two-asset 

geometric and arithmetic Asian options according to the range of the required parameters. Further-

more, we showed that how the Monte-Carlo simulation with a variance reduction technique such as 

the antithetic variance increases the accuracy of the results. After normalization the generated data, we 

divide the data into training and test data sets. The training data has been used as input to the deep 

learning network. For the accuracy analysis, five criterion including the median of bias, the 95% bias 

mean, MSE, correlation coefficient between the original data and the predicted data, and the value of 

R2 have been computed for different scenarios. In addition, the computation time for the Monte-

Carlo-based methods and the deep learning method have been computed. The results demonstrate that 

from both accuracy and computational time points of view, the deep learning method is reliable to 

price the rainbow options. The computational time reduction for the deep learning method in compari-

son with the Monte-Carlo-based methods is significant. Especially for the large data set, at least a fac-

tor of 20 reductions in computational time is achieved with the proposed method. 
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