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Abstract One of the most necessary operations in humanitarian logistics is the 

distribution of relief goods to the population in disaster areas. When 

a disaster occurs, some parts of the distribution infrastructure may be 

damaged and consequently make it impossible to reach all the demand 

nodes and delivering the relief goods. In this study, we focus on the 

planning of infrastructure recovery efforts in post-disaster response. 

The problem is the scheduling of the emergency repair of a network 

that has been damaged by a disaster. The objective is to maximize 

network accessibility for all demand nodes in order to deliver relief 

goods to them. We adopt a dynamic programming algorithm to solve 

the problem when more than one crew group is available. Our 

numerical analysis of the solution shows the performance of the 

algorithm. We, also, compare our results with some similar studies to 

indicate the differences between one and multi-crew scheduling. 
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Introduction 

Based on the International Federation of Red Cross and Red Crescent 

Societies (IFRC) definition, a disaster is a sudden, calamitous event which 

seriously disrupts the functioning of a community and causes human, material, 

and economic or environmental losses that exceed the community’s ability to 

cope with using its own resources (IFRC, 2012). Almost 2.7 billion people 

have been affected, 1.1 million killed and damage of 1.3 trillion dollars has 

been reported worldwide due only to natural disasters (United Nations Office 

for Disaster Risk Reduction, 2012). On the other hand, additional thousands 

of affected and dead people are consequences of technological disasters, 

which are the result of man-made product failures (Hoyos et al. 2012). The 

global growing trend in large-scale natural disasters and affected people 

number, leading to a greater need for efficient disaster management. A 

framework for disaster operations and associated flows and facilities are 

developed by Caunhye et al. (2012) which is shown in Figure 1. 
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Figure 1. 

A Framework for Disaster Operations (Caunhye et al., 2012) 
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Note that, all the post-disaster operations are dependent on infrastructure 

availability. So if some roads are damaged by the disaster the demand nodes 

cannot be reached. Therefore we suggest that road recovery be added to the 

post-disaster operations in Fig 1. Hence one of the main issues affecting the 

food, shelter, and medical supplies delivered to disaster areas is the state of 

the road network. In many situations, it is not a lack of supplies that kills 

people, but the impossibility to get those supplies to the people that need it. In 

Haiti, for example, extensive media coverage of the 2010 earthquake resulted 

in a large excess stock of relief supplies. Up to now, emergency repair and 

relief distribution planning have traditionally been done manually and 

separately, based on the decision-maker’s experience, disregarding the 

interrelationship between emergency repair and relief distribution from the 

system perspective. For emergency repair scheduling, the repair points are 

first separated into several groups, each associated with a nearby work station. 

Note that, a repair point is a particularly damaged segment of the roadway that 

needs to be repaired. The repair schedule is determined manually for each 

group, and is theoretically only a feasible solution. Consequently, the resulting 

solution could possibly be inferior. Since rescue resources are often 

inadequate due to emergent conditions after a major disaster, how to most 

efficiently use these limited resources is very important and has an impact on 

emergency rescue effectiveness and damage reduction. Hence, this research 

tries to develop a model, with the objective of minimizing the length of time 

for both an emergency repair and relief distribution to help efficiently set 

schedules for both within the shortest possible period of time. In this paper, 

the problem of scheduling the emergency repair crew of a rural road network 

that has been damaged by the occurrence of a natural disaster is considered. 

The network repair multi-crew scheduling addresses the scheduling of multi 

repair crew, starting from a single depot, while optimizing accessibility to the 

disaster areas which need relief goods.  
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Literature Review 

New emergency logistics activities were primarily concerned with relief 

distribution, stock pre-positioning, facility locations, evacuation and transfer 

of wounded people and modeled the combination of relief commodity flows 

and resource allocations (Jin et al., 2015). Two stochastic programming 

models have been designed by Chang et al. (2007) for urban flood disasters 

which regulate the plans for rescue resource distribution that involve the 

location of rescue resource warehouses, the structure of the rescue 

organization, the distribution of rescue resources and the rescue resources 

allocation with capacity constraints. A time minimization model is considered 

by Duran et al. (2011) to enhance operations in organizations. An approach 

that is a two-stage stochastic model for distribution and storage of medical 

supply is presented by Mete and Zabinsky (2010). According to their 

stochastic approach, in the first stage the inventory levels and warehouse 

selections are determined and in the second stage transportation plans are 

determined. Also, Rawls and Turnquist (2010) proposed a two-stage 

stochastic mixed-integer problem that considers the uncertainty of the input 

values. In the first stage, in the existence of network damages and demand 

variations, a decision is made. The decision of the second-stage is conditional 

on the first stage decision and is made after the random problem elements. 

Sheu (2007) developed an approach that hybrid fuzzy clustering optimization 

for activities of emergency logistics. Ozdarmar et al. (2004) incorporated the 

vehicle routing problem into the process of relief distribution. In their model 

vehicles are considered as commodities in order to simplify decomposing the 

problem of detailed emergency logistics distribution into two multi-

commodity network sub-problems. Yi and Ozdamar (2007) have extended 

this approach to an integrated location–distribution problem for evacuation 

activities and coordinating logistics support in disaster response operations. 
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Barbarosoglu et al. (2002) proposed a bi-level hierarchical decomposition 

approach for helicopter mission planning within a disaster relief activity. 

Altay and Green (2006) and Ergun et al. (2010) highlight that disaster 

recovery, i.e., the planning of actions taken during the “reconstruction phase”, 

is one of the main areas in which more research is needed. We can find in the 

literature some studies on emergency repair such as Tamura et al. (1994), 

Chen and Tzeng (1999), Fiedrich et al. (2000), Feng and Wang (2003). A 

recent survey by Kunz and Reiner (2012) confirms that “only ten papers 

specifically address the reconstruction phase” and stresses the importance of 

this stage by stating that “the quality of the logistical activities during this 

phase strongly impacts the success of the whole disaster recovery process, 

especially in terms of sustainability and long-term effectiveness (Beamon & 

Balcik, 2008; Benson, Twigg, & Myers, 2001; Besiou, Stapleton, & Van 

Wassenhove, 2011; Kovács & Spens, 2011). Some researchers such as Sohn 

(2006) and Jenelius and Mattsson (2012) identify the importance of network 

links/areas by evaluating accessibility measures by closing one link/area at a 

time and observing its impact on the whole network. Chen and Tzeng (2000) 

propose a two-level mathematical model for sequencing road repair tasks over 

time, imposing a due date. Travel times between tasks are considered but 

repair resources are not limited. The goal is to minimize travel weighted traffic 

flow. The model is quite complex, therefore, a genetic algorithm is proposed. 

In another study, the authors use a multi-objective GA to solve the same 

problem on a realistic network with 24 nodes. Yan and Shih (2009) propose 

an integrated road repair and relief distribution model with the goal of 

minimizing operation completion time. A time augmented network flow 

model with work team trips and relief material flows (over repaired roads) is 

proposed with an equity constraint on demand satisfaction. A three-step 

heuristic is proposed: blocked links are prioritized; worker schedules and 
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commodity flows are optimized. A 46 node network with 25 repair points is 

solved for a 3-day span with a time bucket of 15 min. Due to model size, this 

small network is solved in 900 CPU seconds. Matisziw and Murray (2009) 

identify vital node and arc blockages that would prevent traffic flow the most 

with both mitigation and response intentions (to protect most critical linkages 

in the pre-disaster phase and recover them first in the post-disaster phase). The 

authors maximize flows over broken source-sink paths while identifying the 

most critical k links. The introduction of path aggregation constraints disposes 

of the necessity to enumerate all source-sink paths. Results of the model are 

illustrated on a network of 23 nodes and 34 arcs. In an earlier study, Murray 

et al. (2007) propose a similar model that identifies the most critical links that 

make a set of k facilities inaccessible. This model is tested on a fiber-optic 

communications network. Maya Duque and Sörensen (2011) address the 

repair problem under budget constraints using a fixed cost network flow 

formulation for minimizing the cost of flows from each rural center to the 

nearest regional center. Tahanian and Khaleghi (2015) proposed a genetic 

algorithm to a manpower-scheduling problem arising at a Petrochemical 

Company.  In the proposed algorithm, the indirect coding based on 

permutations of the personnel’s, and a heuristic decoder that builds schedules 

from these permutations were used. Molaei et al. (2016) considered the 

scheduling of preventive maintenance problem with total cost and total 

reliability of the system. Due to the uncertainty in the input parameters, they 

proposed a robust approach to solve the multi-objective model. In this paper, 

a genetic algorithm was applied to achieve the Pareto layer. 

 

Problem Definition 

The problem is similar to the problem defined in Maya Duque et al. 

(2016) but here we consider more than one repair crew. The problem is 
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defined on an undirected and connected graph G = (V, E) of which the nodes 

(V) are either demand nodes (Vd) or damaged nodes requiring repair (Vr). A 

damaged road link is represented by a node located in the middle of the 

corresponding link. Therefore, repairing a road connection is equivalent to 

repairing a node, and we use the two terms interchangeably. There is one 

supply node which is denoted by node 0 and corresponds to the location in 

which the relief supplies are positioned and from which the repair crews 

initially depart. This node is called the depot. Demand nodes are locations that 

need relief goods. Weight factor wi, shows the importance of a demand node. 

Damaged (repair) nodes that have zero demand indicate the locations where 

the work of the repair crew is needed and in these nodes, the time the repair 

crew spends to repair the node is shown by a repair time sj (for node j). Also, 

we do not distinguish between demand nodes and transshipment nodes, and 

we model the transshipment nodes as demand nodes with zero demand. Each 

edge eij∈E is a link that connects two nodes i, j∈V. The time that takes the 

repair crew to traverse a link is defined by tij (travel time) for each eij. 

Every time a crew visit a damaged node, they repairs this node and a 

repair time is spend on this node. On subsequent visits the crew can pass that 

node without spending any repairing time. Demand nodes can become 

accessible when damaged nodes are repaired. In the other hand, a demand 

node i is called accessible, if a path exists that connecting this node to the 

depot with only undamaged and/or repaired nodes and is not longer than a 

certain maximum distance Di. The maximum distance Di is node-specific and 

can be computed based on pre-disaster conditions. Thus, in addition to the 

travel time tij, each edge eijhas a distance measure, denoted dij, that is used to 

evaluate nodes’ accessibility. For each demand node, the schedule of the 

crews determines the moment in time at which this node becomes accessible. 

The objective function of the problem is the sum of the moments at which 
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each demand node becomes accessible weighted by the node demand wi. The 

objective of the network repair problem is to determine the schedule of the 

repair crews that minimizes this objective function. In general, it is not 

necessary for the repair crew to visit all damaged nodes. 

 

Dynamic Programming 

In this section, we adopt The DP model presented by Maya Duque et al. 

(2016) to the situation when more than one repair crew is available. The DP 

model keeps track of the repair crew as it repairs one node in Vr after another, 

and makes sequential decisions on which node the crew should repair next. 

When a node is repaired, a subset of demand nodes that have not been 

accessible so far can become connected to the supply node, and a “cost” is 

incurred corresponding to the new satisfied demand weighted by the time 

when the connection is established. A constraint is implicitly included 

requiring to connect all demand nodes to the supply node, and the weighted 

time the algorithm connects all the nodes in Vd corresponds to the cost that is 

being minimized. Thus, the state of our model needs to keep track of the 

current time and location of the repair crew, as well as the subset of damaged 

nodes that have not been yet repaired, and the subset of demand nodes that are 

not yet accessible from the depot. Our DP formulation requires an additional 

auxiliary node n + 1 to be added to the graph. This node corresponds to a 

dummy depot connected to all the damaged nodes (i.e., nodes in Vr) through 

arcs with zero travel time. Note that, the DP model explicitly tracks the crew 

as it moves from one repair node to the next, while the fastest feasible paths 

between the repair nodes are calculated at each state transition to compute the 

corresponding travel time. Finally, we assume that the DP state is updated 

after the repair of the current node is completed. As mentioned before and the 

main contribution of this study, considering more than one repair crew is the 
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difference between this study and previous studies. So that before explaining 

the formulation of the DP we state some assumptions about the repair crews. 

 Repair time (sj) is the same for all the repair crews. It means that 

each crew spends the same time to repair a damaged node. 

 Each crew goes to the nearest damaged node. 

 At first, 2 repair crews dispatch to the 2 nearest damaged group. 

 It is possible for a damaged node to be repaired by 2 repair crews 

simultaneously. This case often occurs for the last repair node in 

the network. 

Formally, this problem can be expressed as a dynamic programming model 

as follows. Firstly we introduce the sets and parameters. 

V 

Set of nodes {0, 1, . . . , n + 1}; node 0 is the depot; node 

n+1 is a dummy node; 

𝑉 = {0} ∪ 𝑉𝑑 ∪ 𝑉𝑟 ∪ {𝑛 + 1} 

Vd Set of demand nodes;𝑉𝑑 ⊂ 𝑉 

Vr Set of damaged nodes requiring repair; 𝑉𝑟 ⊂ 𝑉 

E Set of edges or road 

eij Edge connecting nodes i and j; 𝑒𝑖𝑗 ∈ 𝐸 

E(k) Set of arcs adjacent to node𝑘 ∈ 𝑉, 𝐸(𝑘) ⊂ 𝐸 

M Set of repair crews; m ={1, …, M} 

wi Relief demand of node 𝑖 ∈ 𝑉 

tij Time required to travel between nodes i and j on edge 𝑒𝑖𝑗 

sj Time required to repair damaged node 𝑗 ∈ 𝑉𝑟 

dij 
Length of edge eij connecting nodes i and j, i.e., the distance 

between nodes i and j 

ed
 

Length of edge e 
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Di 
Maximum acceptable distance from node 𝑖 ∈ 𝑉𝑑to the depot 

in order for i to be accessible to it 

 

DP state: 𝑠 = (𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅�)where 

𝑖𝑚 ∈ (𝑉𝑟\𝑉�̅�) ∪ {0} ∪ {𝑛

+ 1} 

current repair node location of the repair 

crew m 

𝑡𝑚 ≥ 0 current time of repair crew m 

𝑉𝑑
̅̅ ̅ ⊆ 𝑉 demand nodes that are not yet accessible 

𝑉�̅� ⊆ 𝑉 damaged nodes that are not yet repaired 

DP action:𝑎 = 𝑗𝑚, corresponding to the decision for the repair crew m to 

move to node j, where, given the current state𝑠 = (𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅�)the action 

space A(s) is 

𝐴(𝑠) = {
{𝑗 ∈ 𝑉�̅�: 𝜏(𝑖𝑚, 𝑡𝑚, 𝑉�̅�) < ∞}, 𝑖𝑓𝑉𝑑

̅̅ ̅ ≠ 0

{𝑛 + 1}𝑖𝑓 𝑉𝑑
̅̅ ̅ = 0

} 

 

Here,𝜏(𝑠, 𝑎) = 𝜏(𝑖𝑚, 𝑡𝑚, 𝑉�̅�) is the function that returns minimum travel 

time between nodesim and jmover all the paths that do not pass through nodes 

in𝑉�̅�. The function returns infinity if no such paths exist. The fastest path 

problem from i to j for al 𝑗 ∈ 𝑉�̅�can be solved efficiently with one execution 

of a Dijkstra’s algorithm (Dijkstra, 1959), similar to the discussion of the 

accessibility function below. 

DP state transition: g(s, a) is the state transition function that returns a state 

to which the system transitions when action a is chosen in state s. 

 

𝑠 = (𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅�) → (𝑖𝑚

′ , 𝑡𝑚
′ , �̅�𝑑

′ , �̅�𝑟
′)𝑎=𝑗𝑚

 

𝑖𝑚
′ = 𝑗𝑚 

𝑡𝑚
′ = 𝑡𝑚 + 𝜏(𝑖𝑚, 𝑡𝑚, 𝑉�̅�) + 𝑠𝑗 
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�̅�𝑑
′ = 𝑉𝑑

̅̅ ̅\𝑣(𝑉𝑑
̅̅ ̅, 𝑉�̅� , ∑ 𝑗𝑚

𝑚

) 

�̅�𝑟
′ = 𝑉�̅�\{∑ 𝑗𝑚𝑚 } 

 

Here,𝑣(𝑠, 𝑎) = 𝑣(𝑉𝑑
̅̅ ̅, 𝑉�̅� , ∑ 𝑗𝑚𝑚 ) is an accessibility function that returns a 

subset of nodes in𝑉𝑑
̅̅ ̅ that become accessible when node𝑗 ∈ 𝑉𝑟is repaired. Note 

that, 𝑣(𝑉𝑑
̅̅ ̅, 𝑉�̅�, ∑ 𝑗𝑚𝑚 )can return an empty set when no new nodes are 

connected to the supply node by repairing node j. A set of shortest (distance) 

path problems on the updated network (where node j can be passed without 

incurring the repair cost) needs to be solved in order to evaluate v(.). An 

efficient way to do so is discussed later in this section. 

DP action cost: c(s, a) is the instantaneous cost of action a when in state s, 

where for  

 

𝑠 = (𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅�) and 𝑎 = 𝑗𝑚we have: 

𝐶(𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅�, 𝑗𝑚) = 𝑡𝑚 + 𝜏(𝑖𝑚, 𝑡𝑚, 𝑉�̅�) + 𝑠𝑗 . ∑ 𝑤𝑘

𝑘𝑣(𝑉𝑑̅̅ ̅̅ ,𝑉𝑟̅̅ ̅,𝑗𝑚)

 
(1) 

Recursive equation: Let f(s) denote the minimum cost incurred by the 

system reaching from the initial state 𝑠0 = (0,0, 𝑉𝑑, 𝑉𝑟)to the current state𝑠 =

(𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅�). Then, we can write the following dynamic programming 

(Bellman’s) recursive equation. 

 

𝑓(�́�) = 𝑚𝑖𝑛{𝑠,𝑠.𝑡,𝑔(𝑠,𝑎)=�́�,𝑎∈𝐴(𝑠)}(𝑓(𝑠) + 𝐶(𝑠, 𝑎)) 

 
(2) 

where f(s0) = 0. Recursively solving Eq. (2) we find the minimum value for 

 

𝑚𝑖𝑛{𝑠=(𝑖𝑚,𝑡𝑚,𝑉𝑑̅̅ ̅̅ ,𝑉𝑟̅̅ ̅),s.t,i=n+1}(𝑓(𝑠)) 



38 
Journal of System Management (JSM) 

Mehrdad Niyazi 
6(4), Winter 2020, pp. 27-48 

DYNAMIC PROGRAMMING FOR MULTI-CREW SCHEDULING 

 

which corresponds to the minimum value of our problem objective function. 

Accessibility function: Recall, 𝑣(𝑠, 𝑎) = 𝑣(𝑉𝑑
̅̅ ̅, 𝑉�̅� , ∑ 𝑗𝑚𝑚 )is an accessibility 

function that returns a subset of nodes in 𝑉𝑑
̅̅ ̅that become accessible when node 

𝑗 ∈ 𝑉�̅�is repaired. This function can be efficiently evaluated as explained in 

Maya Duque et al. (2016). 

There are a number of observations and problem structure properties we 

use to facilitate efficient implementation of the DP model. To initialize the DP 

recursive equation, the algorithm preprocesses the problem instance to find a 

more compact initial state than𝑠0 = (0,0, 𝑉𝑑, 𝑉𝑟). We Note that, in a given 

instance, a number of demand nodes can maintain their accessibility despite 

the damage to the road network, and s0 does not need to include all the nodes 

in Vd. Thus, the shortest path algorithm is run on the damaged network (i.e., 

no nodes in Vr are assumed to be repaired) to find the minimum distance 

between the supply node 0 and all the demand nodes. Then, the distances 

found are compared to the values of Di’s, and nodes in Vd that are already 

accessible are omitted from the initial state s0. In addition, the demand nodes 

with wi= 0 are omitted, since these nodes correspond to transshipment 

(intersection) nodes and, regardless of their accessibility status, do not 

contribute to the value of the objective function. The cost function defined in 

Eq. (1) assigns a positive value to an action corresponding to repairing a 

damaged node that connects new demand nodes to the supply and a zero value 

when a repair action does not establish accessibility for any demand nodes. 

When a network is severely damaged requiring to repair multiple nodes to 

improve accessibility, our DP state network has a significant number of action 

arcs correspond to zero cost, and only a small subset of actions has a value 

larger than zero. Implementation of minimum cost algorithms on such 

networks is inefficient since a lot of actions and nodes have identical values 

(i.e., equal contribution to the objective function). To facilitate a more 
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efficient implementation of the DP model, we redefine the cost function as 

follows: 

�́�(𝑖𝑚, 𝑡𝑚, 𝑉𝑑
̅̅ ̅, 𝑉�̅� , 𝑗𝑚) = (𝜏(𝑖𝑚, 𝑡𝑚, 𝑉�̅�) + 𝑠𝑗). ∑ 𝑤𝑘

𝑘𝑣(𝑉𝑑̅̅ ̅̅ ,𝑉𝑟̅̅ ̅,𝑗𝑚)

 (3) 

Thus, Eq. (3) assigns a cost of going from node i to node j equal to the 

penalty accrued during that move (plus repair time at node j) for all the 

demand nodes that have not been accessible at that time. Then, the original 

recursive Eq. (2) is solved while substituting cost function c(.) with the new 

cost function�́�(0). Observe that the modified formulation results in exactly 

the same objective function value, the only difference being how we sum the 

cost. 

 

Findings 

In this section, we evaluate DP algorithm for the NPMCSP. To this end, 

we use a set of randomly generated instances of the problem. The dynamic 

programming algorithm was coded in MATLAB in a PC with Windows 10, 

Core i5, 2.4 GHz CPU and 8GB RAM. In this section, first, we explain the 

instance generation and then the experimental results will be presented. We 

use the network generator GNETGEN, which is a modification of the widely 

used NETGEN generator proposed by Klingman, Napier, and Stutz (1974) 

and is completely stated in Maya Duque et al. (2016). In order to introduce 

the procedure, here we briefly explain the instance generation. A minimum 

cost flow network for a given number of nodes |V| and edges |E| is generated. 

A supply/demand value is associated for each node and each edge has a cost 

(travel distance dij) for being traversed and it is a variable within the interval 

[0, 10]. By the following procedure, the network is transformed into a network 

repair. Parameter tij is generated for each edge eij, which represents the travel 

time. This parameter is defined as a function of dij and an average travel speed 
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υ as shown in Eq. (4), where r is a uniformly distributed value in the interval 

[0, 1]. 

𝑡𝑖𝑗 = (1 + 𝑟)
𝑑𝑖𝑗

𝑣
 (4) 

Next, the number of damaged nodes nd= |Vd| is determined. We use a 

parameter α that specifies the percentage of damage to the network, i.e., the 

percentage of the edges in the network that are damaged by the disaster. Thus, 

the number of damaged edges is 𝑛𝑑 = ⌈𝛼|𝐸|⌉. We randomly select nd edges. 

For each selected edge e: (1) an intermediate point on the edge is randomly 

chosen, and (2) a damaged node j is created corresponding to that intermediate 

point. The repair time sj for the damaged node is set as a random variable 

uniformly distributed in the interval [10, 60]. (3) The edge e is replaced by 

two new edges, each of them connecting one of the extremes of edge e and 

node j. (4) the distance and travel time for each of the new edges depend on 

the proportion that it represents the original edge e. Finally, for each node i, 

we must generate the maximum acceptable distance Di to the depot. That is, 

the maximum acceptable length of an undamaged or repaired path from i to 

the depot. The parameter Di is defined as a function of SPi, the shortest path 

from i to the depot on the network in which all damaged nodes are repaired 

(i.e., the pre-disaster conditions). In order to compute Di, we use a parameter 

β that represents the maximum tolerable percentage by which the path 

connecting i to the depot can increase. Thus, for each node i the maximum 

acceptable distance Di is defined as (1 + β)SPi. We consider a set S of small 

instances, a majority of which can be solved exactly by our dynamic 

programming model. We use these instances to analyze the performance of 

the DP approach. Note that, using each one of the minimum cost flow 

networks generated by GNETGEN, several instances can be created by using 

different combinations of the parameters α and β. Table 1 shows the number 
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of nodes considered in the instance, the number of instances generated for 

each number of nodes, the values used for parameters α and β, and the total 

number of instances in the set. In order to show the performance of the 

algorithm, firstly we solve a small instance shown in Fig 2. When no arc 

(repair node) can be repaired, the maximum demand that can be served is 230 

(just demand node 1 can be served). When one repair node is repaired (the 

first repair node with the shortest path by the depot), the satisfied demand 

increases to 1160 (repair node 2 is repaired so demand nodes 4, 7 and 8 

become accessible). It means that as soon as at least one arc (repair node) is 

recoverable, a path to nodes 4, 7 and 8 becomes reachable. Note that, we have 

more than one crew and in this situation arcs 13 and 24 can recover 

simultaneously and then the satisfied demand increases to 1730 and just 

demand node 10 is not accessible. 
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Figure 2. 

A Small Network 
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The dynamic programming model performance is evaluated by a set 

consisting of 300 small instances. Limiting the maximum computing time to 

24 hours for each instance, the algorithm found optimal solutions for 225 of 

those instances. Table 1 presents the number of instances solved to optimality 

for each combination of the number of nodes in the network and value of the 

parameter α, while Table 2 shows the number of optimal solutions found for 

each combination of the number of nodes and value of the parameter β. The 

number of optimal solutions found decreases when the number of nodes and 

the level of damage of the network (α) increase. On the other hand, the number 

of instances solved to optimality slightly increases when β, the maximum 

tolerable percentage in which the path connecting i to the depot can augment, 

increases. We can see from table 2 that by increasing m to 8, almost all number 

of instances solved optimality. Note that, in this study we don’t consider the 

limitation of the crew availability but it may be a limitation in the real life. 

 

Table 1. 

Number of Optimal Solutions Found for Each Combination of the Number of 

Nodes and Values of α and the Number of Crew Groups (m) (out of 12) 

No. 

nodes 

m=1 m=2 m=4 m=8 

α α α α 

5 10 25 30 50 5 10 25 30 50 5 10 25 30 50 5 10 25 30 50 

21 12 12 12 12 9 12 12 12 12 10 12 12 12 12 12 12 12 12 12 12 

26 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

31 12 12 12 11 1 12 12 12 12 4 12 12 12 12 8 12 12 12 12 12 

36 12 12 5 3 0 12 12 8 5 2 12 12 11 8 6 12 12 12 12 10 

41 12 12 2 2 0 12 12 5 5 2 12 12 9 9 5 12 12 12 12 10 
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Table 2. 

Number of Optimal Solutions Found for Each Combination of the Number of 

Nodes and Values of β and the Number of Crew Groups (m) (out of 15) 

No. 

nodes 

m=1 m=2 m=4 m=8 

α α α α 

5 10 25 50 5 10 25 50 5 10 25 50 5 10 25 50 

21 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 

26 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

31 11 12 12 13 13 13 13 14 15 15 15 15 15 15 15 15 

36 6 7 9 10 9 10 11 12 14 14 13 10 15 15 5 12 

41 6 6 8 8 9 9 10 10 13 13 11 8 14 14 14 12 

 

Next, we show the performance of the algorithm on two test instances 

based on the road networks of two districts in Istanbul, Turkey as presented in 

Aksu and Ozdamar (2014). The first network consists of 212 arcs out of which 

49 are damaged and needs to be repaired, while the other network has 386 arcs 

where 79 are damaged (pictures of this two district are in Aksu and Ozdamar 

(2014) and interested readers can refer to it). The repair times for damaged 

arcs (repair nodes) vary between 1 and 10 h. Each instance was allowed a 

maximum of 3600 s. CPU time. 

 

Table 3. 

Computational Results for the First Region 

Number of repair 

Crews (m) 
Makespan (h) 

Number of 

repaired nodes 
CPU time (s) 

1 72 21 3600 

2 72 27 3600 

3 72 32 3600 

4 72 35 3207 

6 72 38 2704 

10 49 49 1232 
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Table 4. 

Computational Results for the Second Region 

Number of Repair 

Crews (m) 
Makespan (h) 

Number of 

repaired nodes 
CPU time (s) 

1 72 23 3600 

2 72 30 3600 

3 72 35 3600 

4 72 44 3600 

6 72 52 3600 

10 63 79 3600 

 

As stated in Feng and Wang (2003), the first 72 hours after a disaster is a 

vital time, for all runs, we have used a unit time period of one hour and set the 

value of Tmax as 72 periods (hours), which corresponds to three 24-h work 

shifts. Tables 3 and 4 display the results for two disaster areas under different 

crew groups. The second column displays the makespan, i.e. the number of 

periods required to complete the repairing the damaged nodes (arcs). Note 

that, when the repairing cannot be done within 72h, a value of 72h is entered 

in the table. The third column is the number of damaged nodes that are 

repaired at the end of the indicated makespan. Note that, in the first region as 

we can see from Table 3, just when10 repair crews are available all the demand 

nodes can be accessible. Also, in the second region just when 10 repair crews 

are available all the damaged nodes are repaired and all the demand nodes can 

become accessible. Note that, differences between the numbers of repaired 

nodes in two regions are because of the topology of their network. This 

suggests that the problem gets easier as the value of m (number of crew 

groups) increases. As expected, a higher value of m, also, results in a better 

objective function value (i.e. total accessible time of demand nodes) as well 

as a reduced makespan. In the case of the first region, for higher settings of m 

we see a reduced CPU time requirement. Finally, the results in Tables 1 and 2 
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suggest that the algorithm can be used to obtain high-quality solutions within 

a reasonable time. As a result, we can compare the obtained result with Aksu 

and Ozdamar (2014) as they consider just one crew group with different 

equipment. We can see that number of repaired nodes and makespan is 

reduced efficiently in our approach with multiple crew groups. 

 

Conclusion and Future Research 

In the occurrence of a disaster, the distribution infrastructure can be 

seriously damaged, making it impossible or unsafe to execute the response 

and recovery operations. In this paper, the problem of emergency repair of a 

network that has been damaged after a disaster is studied. We address the 

scheduling of multi repair crews, starting from a single depot, while 

optimizing accessibility to the demand nodes that need relief goods. Our 

contribution compared to the previous studies is considering the repair crews 

more than one crew. We adopt a dynamic programming model and discuss 

efficient implementation techniques that allow us to find optimal solutions for 

a range of instance sizes of the problem. We compare our results with the same 

study that considers just one repair crew and it was shown that our approach 

is working efficiently. Considering more than one depot and heterogeneous 

fleet are interesting areas for future research. Also, comparing the 

computational result with some similar algorithms for the crew scheduling 

problem is a good area which authors are working on it. 
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