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Abstract 
Optimal Portfolio Selection is one of the most important issues in the field of financial 

research. In the present study, we try to compare four various different models, which optimize 

three-objective portfolios using “Postmodern Portfolio Optimization Methods”, and then to 

solve them. These modeling approaches take into account both multidimensional nature of the 

portfolio selection problem and requirements imposed by investors. Concretely different 

models optimize the expected return, the down side risk, skewness and kurtosis given portfolio, 

taking into account budget, bounds and cardinality constrains. The quantification of 

uncertainty of the future returns on a given portfolio is approximated by means of LR-fuzzy 

numbers, while the moments of its returns are evaluated using possibility theory. In order to 

analyze the efficient portfolio, which optimize three criteria simultaneously, we build a new 

NSGAII algorithm, and then find the best portfolio with most Sortio ratio from the gained 

Pareto frontier. Thus, in this paper we choose 153 different shares from different industries 

and find their daily return for ten years from April of 2006 till March of 2017 and then we 

calculate their monthly return, downside risk, skewness, kurtosis and all of their fuzzy 

moments. After designing the four models and specific algorithm, we solve all of the four 
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models for ten times and after collection of a table of the answers, compare all of them with 

Treyner ratio. At last, we find that using fuzzy and possibistic theory make higher return and 

better utilized portfolios.  

Key words: Modern Portfolio Theory, Post Modern Portfolio Theory, Financial Modeling, 

Optimize Portfolio Selection, Evolutionary Multi-Objective Algorithm, Fuzzy Logic 

1. Introduction 
Optimal Portfolio Selection is one of the most important issues in the field of 

financial research. This means what combination of assets the investor should 

choose to maximize the utilization with relevant limitation. Markowitz 

considered returns as a random variable and solved this problem with 

maximization of return and minimization of variance as risk criteria. However, 

return on securities in the real world is usually vague and inaccurate. In today's 

world of investment, one of the challenges of investment in return on assets is 

uncertainty of future events and their consequences.  

Solving the problem of selecting portfolios requires two key components: a) 

A suitable method for quantitatively measuring the uncertainty of future returns 

of the desired portfolio; and b) The optimization procedure and method that 

can provide Pareto optimal portfolios that meet the investors’ requirements 

(D.Dubois, Prade, 1980) 

In the recent years, there has been a growing interest of including 

information about trading and investors’ requirements into the portfolio 
selection problem, since not all the relevant information for portfolio selection 

can be obtained just by optimizing returns and risk simultaneously. Thus, some 

practical constraints have been added to portfolio selection problem in order to 

make it more realistic, such as upper and lower bound constrains, allowing 

asset combinations which respect the investors’ wishes, or cardinality 

constrains limiting the number of assets participating in the portfolios. With the 

introduction of such constraints, the portfolio optimization problem becomes a 

constrained multi-objective problem that is NP-hard, and traditional 

optimization methods cannot be used to find efficient portfolios (Reben 

Saborido, Ruiz, Bermudez, Vercher, 2016).  

The main purpose of this paper is to solve the problem of portfolio selection 

model by three goals optimizing simultaneously. Therefore, we design two 

different models in two different ways of fuzzy and simple (non-fuzzy) for 
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simultaneously optimization of three-objective modelling, by using mean, 

downside risk, skewness and kurtosis. After that, we design a new method of 

NSGAII algorithm to solve models and finally, we conclude that using fuzzy 

logic has a positive effect on portfolio optimization process and using 

skewness in three-objective modeling can make much better portfolios than 

using kurtosis. 

1. Formulation and Background Concepts  
Multi-objective optimization problems are mathematical programming 

problems with a vector-valued objective function, which is usually denoted by 

f(x) = (f1(x), ... fn(x)) for a decision vector x=(x1,...,xN), where fj(x) is a real-

valued function deifne� over the feasible set S⊆RN, for every j=1,..,n. 

Consequently, the decision space belongs to RN, while the criterion space 

belongs to Rn, and the multi-objective optimization problem can be stated as 

follows: 

 

Optimize: {f1(x), …,fn(x)}                                          (1) 

s.t. x ∈  S. 
 

In the criterion space, some objective functions must be maximized (j∈J1) 

while others must be minimized (j∈J2), where J1 and J2 verify that  

J1 J2 {1 , ....,n}=   and J1 J2 = φ . 

We say that x∈ S is Pareto optimal or efficient solution if there does not 

exist another x’∈ S, such that J jf (x ) f (x)′ ≥  for every j∈J1 and J jf (x ) f (x)′ ≤  for 

every j∈J2  . with at least one strict inequality. The set of all Pareto optimal 

solutions x ∈ S.(in the decision space) is called the Pareto optimal set, denoted 

by E, and the set of all of their corresponding objective vectors f(x) (in the 

criterion space) is called the Pareto optimal front, denoted by f(E). 

Additionally, given two objective vectors z, z’∈ Rn , we say that z’ dominated 
z if and only if z’j  ≤ zj   for every�j∈J1   and zj  ≤ z’j for every j∈J2 with at 

least one strict inequality. If z and z’ do not dominate each other, they are said 

to be non-dominated (Reben Saborido,Ruiz, Bermudez, Vercher, 2016). 

In the multi-objective optimization, the ideal and the nadir points are very 

useful since they define lower and upper bounds for the objective functions, 
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respectively. The ideal point z*= (z1*,… , zn*)T ∈ Rn is obtained by 

optimizing each objective function individually over the feasible set, that is z*j 

= x smax ∈  = f(x) = x smax ∈ f(x) for every j∈J1 and z*j = x smax ∈ = f(x) = x smin ∈  

for all j∈J2 . The nadir point znad= (z1nad …, znnad)T ∈ Rn is defined as 

znadj = j x smin f (x) ∈  for all j∈J1 and znadj = j x smaxf (x) ∈  for all j∈J2. In 

practice, the nadir point is difficult to calculate and the general practice is to 

estimate it with different approaches {38, 39}. Sometimes, a vector that 

dominates every Pareto optimal solution is required, which means that it is 

strictly better than the ideal point. This vector is denoted by z**= (z1**,… , 
zn**)T and it is called a utopian point. In practice z** can be defined by  

** *
j j jZ Z= + ε  for all j∈J1 and ** *

j j jZ Z= − ε   j∈J2, where j 0ε >  is a small real 

number for every j = 1, …,n (Reben Saborido, Ruiz, Bermudez, Vercher, 

2016).  

The use of evolutionary multi-objective optimization (EMO) algorithm for 

solving multi-objective optimization problems has become very popular in the 

last two decades and, currently it is one of the most active research fields [3.4]. 

In the EMO field, solving a multi-objective optimization problem is understood 

as finding a set of non-dominated solution as close as possible to Pareto 

optimal front (diversity). EMO algorithms are population-based approaches 

which start with randomly created population of individuals. Afterwards, the 

algorithm enters in an iterative process that creates a new population at each 

generation, by the use of operators which simulates the process of natural 

evolution: selection, crossover, mutation and/or elitism preservation. One of 

the main advantages of EMO algorithms is that they are very versatile, as they 

can deal with multi-objective optimization problems having variables and 

objective functions of different nature (X. Zou, Chen, Liu, Kang, 2008).  

One of the most used EMO algorithms is the Non-dominated Sorting 

Genetic Algorithm (NSGAII) (K. Deb, Pratap, Agarwal, 2002). This algorithm 

is based on the Pareto dominance and has stood out by its fast non-dominated 

sorting procedure for ranking solutions and its elite–preserving mechanism for 

the selection of best individuals. Starting from a randomly generated 

population, at each generation of NSGAII, and offspring population is created 

through selection, cross over and mutation operators. Then both parents and 

offspring are joined and classified into non-dominated fronts as follow. From 

the resulting population, the individuals who are not dominated by any other 
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solution constitute the so-called first non-dominated front. These individuals 

are temporarily removed and, subsequently, the second non-dominated front is 

formed by next individuals, who are not dominated by any other solution in the 

population. This process continues until every individual has been included 

into a single front. Afterwards, the population to be passed to the next 

generation is formed by the solutions in the lower level of non-dominated 

fronts. 

2. Previous related works  
While classical portfolio optimization problems can be efficiently solved by 

applying classical optimization techniques, this is not the case if additional 

conditions, such as diversification and cardinality constraints, are introduced. 

Mainly, the most significant difficulty is the generation of feasibility portfolios 

satisfying the requirements imposed by investors. Additionally, the solution 

process required for finding the set of efficient portfolios is not trivial. Note 

that the management of non-dominated solution is computationally simple in 

the bi-objective case, but it is much complicated in presence of multi-objective 

(three of more). In this regard, the usefulness of evolutionary multi-objective 

optimization for solving the constrained multi-objective portfolio selection 

problem is doubtless because of its ability to handle multiple criteria and 

constraints at the same time (K. Liagkouras, Metaxiotis, 2015). The reason for 

such a success is that they work with the problem as a black box, only 

considering inputs and outputs, without requiring additional information like 

derivation or continuity of properties of objective functions (Khajezadeh 

Dezfuli, Mehdi, 2016).  

For example, Chang et al. (T.J.Chang, Meade, Beasley, Sharaiha, 2000) 

applied these types of algorithms to the mean-variance (MV) model. They 

showed that limiting the number of assets in portfolio (i.e including cardinality 

constraints) and considering lower and upper bounds for budget invested in 

such assets modify the shape of Pareto optimal front. They demonstrated that 

in the presence of constraints, the Pareto optimal front of MV model is more 

difficult to approximate, because it may become discontinuous.  

To handle cardinality constraints in the MV bi-objective optimization 

model, a few hybrid strategies have been applied quite often. In (D.Maringer, 

Kellerer, 2003), a combined simulated annealing and evolutionary optimization 
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procedure was suggested, while Moral-Escudero et al. (R.Moral-Escudero, 

Ruiz-Torrubiano, Suarez, 2006) used a hybrid strategy that made use of genetic 

algorithms and quadratic programming for selecting the optimal subset of 

assets. In (R.Moral-Escudero, R.Ruiz-Torrubiano, A.Suarez, 2007), an EMO 

algorithm was combined with fuzzy logic in order to facilitate the trade-off 

between the two objectives. They also analyzed the performance of several 

EMO algorithms for solving the constrained MV portfolio optimization 

problem. For solving the cardinality constrained MV model, Chiam et al. 

(S.C.Chiam, Tan, Mamum, 2008) proposed an order-based representation with 

suitable variation operator and some techniques for handling constraints. More 

recently, Anagnostopoulos and Mamanis (K.P. Anagnostopoulos, G.Mamanis, 

2008), applied three EMO algorithms in order to explore the Pareto optimal 

Front if cardinality was included into the MV model as an additional objective 

to be minimized. Also, Anagnostopoulos and Mamais (S.C.Chiam, Tan, 

Mamum, 2008) presented a study in which five EMO approaches were applied 

to the cardinality constrained MV model for solving instances of data sets with 

large number of assets, showing a clear superiority of the evolutionary 

algorithms SPEA2(Zitzler, M.Laumanns, L.Thiele, 2001) and NSGAII (K.Deb, 

Pratap, Agarwal, Meyarivan, 2002).  Lately, Liagkouras and Metaxiotis 

(K.Liagkouras, Metaxiotis, 2014) have proposed a mutation operation for 

solving the cardinality constrained MV model, which was compared with the 

classical polynomial mutation operator also in NSGAII and SPEA2. 

Other authors solve portfolio selection models with the alternative measure 

of risk and/or additional constraints by means of EMO algorithms. For 

example, Chang et al. (T.J.Chang, Yang, Chang, 2009) applied a genetic 

algorithm for solving bi-objective optimization portfolio selection problem 

with different risk measures (variance, semi-variance, absolute deviation), 

including skewness as a constraint. These authors reported the fact that 

investors should not consider portfolio sizes above one third of the total 

number of assets, because they are dominated by other portfolios with less 

positive components.  

Note that the majority of the aforementioned evolutionary procedures are 

applied for solving extension of MV model, in which the expected return and 

risk of assets are considered as known parameters. Instead, fuzzy portfolio 

selection approaches allow the use of fuzzy numbers either for representing the 

investorss aspiration level for expecting return and risk, or for quantifying the 
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uncertainty of future returns on assets, using credibility or possibility 

distribution. For example Bhattacharyya et al. (R.Bhattacharyya, Kar, 

Majumder, 2011) considered a fuzzy mean-variance-skewness model with 

cardinality and trading constraints, which is solved by applying both fuzzy 

simulation and an elitist optimization genetic algorithm. Bernidez et al. 

(D.Bermudez, Segura, Vercher, 2012) implemented a bi-objective optimization 

genetic algorithm for solving a fuzzy mean-downside risk portfolio selection 

problem with cardinality constraints and diversification conditions, in which 

the approximation of the uncertain returns was done through trapezoidal fuzzy 

numbers. In (P.Gupta, Inuiguchi, Mehlawat, Mittal, 2013), a multi-criteria 

credibilistic portfolio selection model was proposed, which maximized (short 

and long–term) return and liquidity and considered the portfolio risk as a 

credibility-based fuzzy chance constraint. The fuzzy estimates were obtained 

assuming both trapezoidal possibility distributions and general functional 

forms. This model, which also included budget, bound and cardinality 

constraints was solved by applying a hybrid algorithm that integrated fuzzy 

simulation with a real-coded genetic algorithm. 

2.1. Fuzzy background 
In the portfolio optimization problem, the modeling of uncertain returns on 

assets is made using different approaches. Some authors assume that these 

returns are random variables, while others consider fuzzy logic to integrate the 

uncertainty of the datum, imperfect knowledge of market behavior, imprecise 

investors' aspirations levels and experts opinion and so on. However, expected 

return on asset modeling either as random variable or fuzzy quantities are 

consider as known parameters of optimization problem, which have been 

usually estimated throughout historical data set (Reben Saborido, Ruiz, 

Bermudez, Vercher, 2016). 

In the MDRS model (Enriqueta.Vercher, Bermudez, 2013), fuzzy numbers 

are considered to present the uncertainty of the investment return on a given 

portfolio and historical data information is used for building suitable 

membership functions for returns of the investment. For a capital market with 

N financial assets, a portfolio of x=(x1,…,xN)T determines how the total wealth 

of investors is allocated, where xi is the function of the total investment 

devoted to asset i for every i=1,…,N. In this approach, its�return�over T�period,�
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denoted by  { }T

t 1
rt(x) =  , are used as the historical data set, and the possibility of 

distribution of return on x allows us to evaluate their corresponding interval-

mean valued expectations. Let us briefly review some definitions and results 

required about fuzzy set theory (D.Dubois, Prade, 1978 , 1980, M.Inuiguchi, 

T.Tanino,2002).  

A fuzzy number Q is said to be an LR-type fuzzy number if its membership 

function has the following form: 

 

Where A and B satisfy A≤B, and represent the lower and upper bounds of 

the core of Q representatively, i.e., {y| } =[A, B  ]that SA و SB are 

the left and the right spread of Q and L, R: [0, + ∞)→[0, 1 ] are reference 

functions which are non-increasing and upper semi-continuous with 

. A fuzzy number Q is said to be bounded 

LR-type fuzzy number if the reference functions are such that the support of Q 

is bounded, i.e., if there exist two real numbers a and b, with a<b, such that 

{y: [a, b]. 
For a portfolio x, let us consider the reference function  

and , where  and are their positive shape parameters, 

respectively, for every t =1,…,T. Thus, we have a power LR-fuzzy number Q 

induced a possibility distribution that matches with its membership function 

 (L.A.Zadeh, 1978), we consider power LR-fuzzy number to 

approximate the uncertain return on the portfolio x, and we directly 

approximate the possibility distribution of its return instead of aggregating the 

possibility distribution of the individual assets that compose x. Then, to 

approximate the expected rerun on a given portfolio, the concept of interval-

valued expectation (L.A.Zadeh, 1978) is applied, with the usual defuzzification 

approach for a crisp represent of their possibility moments. It must be 
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mentioned that other weighted mean-interval definitions could be used 

analogously (R.Fullér, Majlender, 2003). 

Let us introduce the explicit formulation of possibilistic moment considered 

in (Enriqueta Vercher, Bermudez, 2013) as objective functions of the portfolio 

selection MDRS model: 



 
First possibilistic 

moment:Possibilistic 

mean value 

=  

Second possibilistic 

moment: 

Possibilistic  

downside risk  

Third possibilistic 

moment: 

Possibilistic 

Skewness 

 

Forth possibilistic 

moment: 

Possibilistic  

Kurtosis 

 



3. Modeling   
In this section, we describe several models that we have used to determine the 

best portfolio selection, and after that, we will solve the models, compare the 

results, and rank them. 

Let us consider a capital market with N financial assets offering uncertain 

rates of returns. As the investor desires to know which optimal allocation of 

their wealth exists among the N assets, the maximization of of investment 

return at the end of the period is looked for. Let us consider a portfolio x=(x1, 

x2, …, xN)T in which the total wealth is allocated, where xi is a fraction of the 

total investment devoted to the asset�i,�for every i=1,…,N. The portfolio must 

verify that  

N

i

i 1

x 1

=
=∑   

 

And the non-negative condition of every proportion, xi≥  0 for every i=1, 

…, N when short selling is excluded.�In the models, the expected return on 

asset i and its possibilistic moments are not considered as known parameters. 

The possibility distribution of a given portfolio is directly approximated instead 

of using aggregation of the possibility distribution of the individual assets, as 

mentioned before. According to this, the return of portfolio x is modeled by the 

power of LR-fuzzy number, denoted by x 1 u L RP (p ,p ,c,d)
π ρ

=  whose cord and 

spreads are directly defined as functions of suitable percentile qj’s, while the 

shape parameters are evaluated using the preserve rating procedure, using those 

percentiles with a 50% possibility of being realistic. The modeling approach 

has been previously used for fuzzy ranking risky portfolios and for obtaining 

efficient portfolios using bi-objective optimization procedure (Vercher, 

Enriqueta Bermudez, 2015). For building efficient portfolios, in different 

models, we take into account the simple return, possibilistic expected return, 

semi-deviation, possibilistic semi-deviation below mean, skewness, 

possibilistic skewness, kurtosis and possibilistic possibilistic in four different 

models (Reben Saborido, Ruiz, Bermudez, Vercher, 2016).  
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Additionally, we imposed limits on the budget to be invested in each asset i 

by using lower and upper bounds, denoted by li
 and ui, respectively, for every 

i=1, …, N. Besides, in order to control the number of assets in the portfolio, an 

additional constraint is incorporated to assure that the number of non-negative 

components in each portfolio is within an interval [kl,ku], for given values kl 

and ku. 

 Based on aforementioned assumptions, the cardinality constrained, we 

design four different models as follow: 

(1) fuzzy mean, fuzzy downside risk, fuzzy skewness 

(1)  

(2)  

(3)  

 St 

(4) 

 
(5)  
(6)  

  
 

 

That is possibilistic expected return,  possibilistic semi-deviation 

below mean is ,  is the possibilistic skewness.  

 

(2) fuzzy mean, fuzzy downside risk, fuzzy kurtosis 
(7)  
(8)  

(9)  

 St 
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(10) 

 
(11)  
(12)  

  
 

That is possibilistic expected return,  is the possibilistic semi-

deviation below mean, and  is the possibilistic kurtosis.  

 

(3) mean, downside risk, skewness 
(13)  
(14)  

(15)  

 St 

(16) 

 
(17)  
(18)  

  

 

That is the expected return,  is the semi-deviation below mean, and 

 is the possibilistic skewness.  

 

(4) mean, downside risk, kurtosis 
(19)  
(20) �

(21)  

 St 
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(22) 

 
(23)  
(24)  

  
 

4. Portfolio selection problem 
Clearly, the creation of a suitable structure for the chromosome in a multi-

objective genetic algorithm can have a significant effect on the quality and 

efficiency of this algorithm. In fact, a suitable structure for the chromosome 

can lead to a full space search, and the result of the algorithm will be a better 

answer. What makes it difficult to use this algorithm in this problem is the two-

step problem solving. This means that we must first agree on the number of 

shares available per portfolio, and then determine the amount of investment in 

the shares in that portfolio. The chromosome designed in this paper solves the 

problem and solves the problem by creating the same structure for all 

chromosomes (Mehdi Khajezadeh Dezfuli, 2016). The following figure shows 

an example of a chromosome designed: 

 

0.21 0.84 0.65 ... 0.91 0.03 0.19 0.38

1 2 3 ... 152 153 154 155

کل سهم ه 

ففی برای تعيين تعداد سهم ها در پرت

                        �       ز بين سهامی ممججد

0.51 0.83

156 157

0.13 0.71

158 159

0.90 0.09

160 161

0.35 0.64

162 163

0.59

164

0.53 0.81

165 166

 

The designed structure consists of three main parts. In the first part of the 

chromosome, all existing companies in the problem (153 shares) are 

considered. The second part consists of a cell that is shown in green and is used 

to determine the number of shares in each portfolio, and the third part consists 

of orange cells that are used to select portfolios. All these cells are assigned a 

random number between 0 and 1, and then by the defined function, these 

values are converted to the main values of the problem. Initially, using the 

To select shares from existing shares 

To determine the number of shares of each portfolio 

Total shares 
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number contained in cell 154 and using the spacing taken between 0 and 1, and 

the location in each range, the number of shares in the portfolio is determined. 

Then, in the same way and with the function that is defined, the numbers in the 

orange cells determine the shares to be selected from among the existing 153 

shares. At this point, a specific portfolio has been created, with numbers 

between 0 and 1; now, to determine the amount of investment per share, each 

of these numbers is divided by the total number of available portfolios in order 

to determine the percentage of investment per share. The total percentage 

values will be equal to one. Finally, using the values of the variables and the 

problem data, the objective functions of the model are calculated. The obvious 

characteristics of the chromosome can be pointed out that all the problem 

constraints in the created structure are observed, and that no irrelevant answer 

will be generated. So you can be sure that the final answer will be questionable.  

4.1. Multi-objective genetic algorithm operators  
Two operators perform the search process in the multi-objective genetic 

algorithm: mutation and crossover. The reproduction operator is used to extract 

better answers; while mutation operator is used to explore the broader response 

space, the crossover is used to extract better answers (Mehdi Khajezadeh 

Dezfuli, 2016). 

4.1.1. Crossover operator 
Typically, this operator uses two chromosomes to create a chromosome with 

new features. Selected chromosomes are referred to as parents and a newly 

created chromosome is called the child. Several types of this operator are used 

in a multi-objective genetic algorithm which includes single point crossover, 

double point crossover and uniform crossover. In this paper, single point 

crossover operator is used to find better solutions. The parent roulette wheel 

selection is used to select parents. The following figure shows a sample of 

single-cut reproduction: 
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0.35 0.19 0.91 ... 0.83 0.52 0.06

0.67 0.51 0.33 ... 0.16 0.88 0.23

0.67 0.51 0.33 ... 0.83 0.52 0.06

0.35 0.19 0.91 ... 0.16 0.88 0.23

Parent 1

Parent 2

Offspring 1

Offspring 2

Crossover point

 
 

4.1.2. Mutation operator 
There are several types of mutant operators that are used in the multi-objective 

genetic algorithm. Items such as Swap, Insertion and Inversion are used. All of 

these methods are used in this article. Firstly, a chromosome is selected using 

the roulette wheel method. The numbers 1 to 3 are assigned to mutant 

operators, respectively, and then a random number is generated between the 

interval (Enriqueta Vercher, Bermudez, 2015), which determines which 

operator to use. An example of a succession operator is shown in the following 

figure: 

 

0.35 0.19 0.91 ... 0.83 0.52 0.06 0.35 0.83 0.91 ... 0.19 0.52 0.06
Swap

 
 

5. Research hypotheses 
There is no significant difference between the performance of three-objective 

evolutionary models, mean-downside risk-skewness, mean-downside risk-

kurtosis, fuzzy mean-fuzzy downside risk-fuzzy skewness and fuzzy mean- 

fuzzy downside risk- fuzzy kurtosis.  

6. Sampling method 
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The population of the research is the industries listed in Tehran Stock 

Exchange with two criteria: A) Market concentration and turnover B) Number 

of companies accepted in the industry. Thus, the 35 industries listed on Tehran 

Stock Exchange, out with the exception of industries such as banks and credit 

institutions, insurance and pension funds, investment companies, Holdings and 

other financial intermediation (which are characterized by unusual capital 

structure and different reporting practices and can lead to data deviations), 

industries that are more exposed to market players and include at least 10 

active and qualified companies were selected as the statistical sample of the 

survey. 

 

 

 

7. Research method 
This research is practical in terms of the purpose.  In terms of the method of 

implementation, it is a descriptive research and it is a correlation analysis. This 

research can be considered as a post- traumatic research. The research steps 

were as follow: 

1. In the first step, the data were collected. 

2. Daily returns of each company were extracted from the TSETMC 

website and “Rahavard Novin” software, and the monthly return, 

downside risk, skewness and kurtosis for each company were 

calculated. 

3. Quartiles of returns were determined and fuzzy return, fuzzy downside 

risk, fuzzy skewness, and fuzzy kurtosis were calculated and then, the 

numbers were converted to crisp numbers. 

4. Interest of the Investor involved for investment in each company (up 

to 60% of the total initial arrival) and the number of portfolio 

members (between four and twelve shares). 

5. The NSGA-II algorithm was coded in the MATLAB software. After 

Taguchi experiment design, the population size was 150, replication 

was 100, the reproductive rate was 85%, and the mutation rate was 
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15%. After that, each of the models was executed ten times and Pareto 

frontier was obtained. 

6. The best portfolios were chosen from the Pareto frontier using the 

Sortino ratio. 

7. To compare the extracted portfolios, the trainer's ratio was used, using 

the actual data of 2016-17, the summary of which is given in Table 1. 

8. The variance analysis was used to compare the performance of the 

models. 

8. Numeral results 
In this section, all different scenarios examined will be compared in 

three-objective programming models and the results will be presented. 

1. Results from three-objective planning models 
Fuzzy Mean- 

Fuzzy downside 

risk- Fuzzy 

kurtosis 

Fuzzy Mean - 

Fuzzy downside 

risk - Fuzzy 

skewness 

Mean-

downside 

risk- kurtosis 

Mean-downside 

risk- skewness 

22/73 33/41 5/54  19/65 

Treyner ratio 

Fuzzy Mean- 

Fuzzy downside 

risk- Fuzzy 

kurtosis 

Treyner retio of 

Fuzzy Mean - 

Fuzzy downside 

risk - Fuzzy 

skewness 

Treyner 

ratio of 

Mean-

downside 

risk- kurtosis 

Treyner ratio of 

Mean-downside 

risk- skewness 

16/58 -0/23 1/39 -6/57 
 

Then the results of two different models of Mean-Downside risk-Skewness and 

Mean-Downside risk-Kurtosis will be compared: 
 

2. T student test: Mean-Downside risk-Skewness and Mean-Downside risk-Kurtosis  
ITEM COMPARATIVE ITEMS STATISTICAL 

VALUE 
CRITICAL 

VALUE 
Pvalue 

APPROVED 

HYPOTHISES 

1 Return of the models 3.81 2.262 0.0042 H1 

2 Treyner’s retio of the models -4,20 2,26 0,0023 H1 
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As indicated in Table 2, the average returns from ten times 

implementation of the planning model of Mean-Downside risk-

Skewness is much better than implementation of the planning 

model of Mean-Downside risk-Kurtosis, and create more return. 

The rejection of the assumption of H0 also shows that the results 

are not coincidental and the t test also confirms these results. 
 

3. T student test: Fuzzy Mean-Fuzzy Downside risk- Fuzzy Skewness and Fuzzy Mean- Fuzzy 
Downside risk - Fuzzy Kurtosis 

ITEM 
COMPARATIVE  

ITEMS 
STATISTICAL  

VALUE 
CRITICAL  

VALUE 
Pvalue 

APPROVED  

HYPOTHISES 

1 
Return of the 

models 
-2.6 2.26 0.029 H1 

2 Treyner’s retio 

of the models 
2.47 2.26 0.036 H1 

Table 3 shows that the H0 assumption is rejected in relation to the 

comparison of the two above models, which indicates that the difference 

between the obtained numbers is not accidental and reliable. Therefore, it can 

be concluded that the efficiency of the planning model is Fuzzy Mean-Fuzzy 

Downside risk-fuzzy Kurtosis is better than the Mean- Downside risk- 

Kurtosis. 

4. T student test: Fuzzy Mean-Fuzzy Downside risk- Fuzzy Skewness and Mean- Downside risk 
- Skewness 

ITEM 
COMPARATIVE  

ITEMS 
STATISTICAL  

VALUE 
CRITICAL  

VALUE 
Pvalue 

APPROVED  

HYPOTHISES 

1 
Return of the 

models 
-2.26 2.262 0.0497 H1 

2 Treyner’s retio 

of the models 
6.37 2.26 0.00013 H1 

 
Table 4 shows that the H0 assumption is rejected in relation to the 

comparison of the two above models, which indicates that the difference 

between the obtained numbers is not accidental and reliable. Therefore, it can 

be concluded that the efficiency of the planning model in Fuzzy average - 
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Fuzzy Downside risk - Fuzzy Skewness is better than the programming model 

Mean – Downside risk – Skewness.  

5. T student test: Fuzzy Mean-Fuzzy Downside risk- Fuzzy Kurtosis and Mean- Downside risk - 
Kurtosis 

ITEM 
COMPARATIVE  

ITEMS 
STATISTICAL  

VALUE 
CRITICAL  

VALUE 
Pvalue 

APPROVED  

HYPOTHISES 

1 
Return of the 

models 
-3.45 2.26 0.007 H1 

2 Treyner’s retio 

of the models 
2,57 2.26 0,045935512 H1 

 

As shown in Table 5, the average returns from ten times implementation of 

the planning model of fuzzy Mean-fuzzy downside risk-fuzzy Kurtosis, is 

better than Mean-Downside risk-Kurtosis. 

 

 

9. Conclusion 
Two important elements of investment are risk and returns. Investors are 

always willing to raise their returns at a certain level of risk, or at a certain 

level of return, reduce their risk. By presenting modern portfolio theory, 

Markowitz showed that creating a portfolio of financial assets would be 

possible to reduce a certain level of risk returns. Therefore, investors tend to 

maximize their expected returns and minimize risk by creating the optimal 

combination of financial assets in their stock portfolios. However, investors 

face three major problems: The first problem is the underlying assumption of 

the Markowitz model. That is, the return on assets is considered as a random 

number, which is far from reality in today's world due to uncertainty and 

ambiguity in existing information and future conditions. The second problem is 

the symmetry of the distribution function of assets and the investor's 

indifference to the risk criterion. The third problem is the solving methods used 

when considering and paying attention to the two previous problems. 

Considering the three problems raised, the present article tried to solve the 
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problems by using factors such as downside risk, skewness and kurtosis, and 

taking the considerations of the investor into account, and using fuzzy theory 

simultaneously to create optimal portfolios with higher return and lower risk. 

Finally, the obtained portfolios were compared in terms of performance with 

the Treynor's ratio, and it was determined that when we use fuzzy logic in the 

formation of portfolios, results were much better and more desirable and had 

more return and less risk.  
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